Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Gut ; 72(2): 242-255, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35705367

RESUMEN

OBJECTIVE: Cell-cell (CC) and cell-matrix (CM) adhesions are essential for epithelial cell survival, yet dissociation-induced apoptosis is frequently circumvented in malignant cells. DESIGN: We explored CC and CM dependence in 58 gastric cancer (GC) organoids by withdrawing either ROCK inhibitor, matrix or both to evaluate their tumorigenic potential in terms of apoptosis resistance, correlation with oncogenic driver mutations and clinical behaviour. We performed mechanistic studies to determine the role of diffuse-type GC drivers: ARHGAP fusions, RHOA and CDH1, in modulating CC (CCi) or CM (CMi) adhesion independence. RESULTS: 97% of the tumour organoids were CMi, 66% were CCi and 52% were resistant to double withdrawal (CCi/CMi), while normal organoids were neither CMi nor CCi. Clinically, the CCi/CMi phenotype was associated with an infiltrative tumour edge and advanced tumour stage. Moreover, the CCi/CMi transcriptome signature was associated with poor patient survival when applied to three public GC datasets. CCi/CMi and CCi phenotypes were enriched in diffuse-type GC organoids, especially in those with oncogenic driver perturbation of RHO signalling via RHOA mutation or ARHGAP fusions. Inducible knockout of ARHGAP fusions in CCi/CMi tumour organoids led to resensitisation to CC/CM dissociation-induced apoptosis, upregulation of focal adhesion and tight junction genes, partial reversion to a more normal cystic phenotype and inhibited xenograft formation. Normal gastric organoids engineered with CDH1 or RHOA mutations became CMi or CCi, respectively. CONCLUSIONS: The CCi/CMi phenotype has a critical role in malignant transformation and tumour progression, offering new mechanistic information on RHO-ROCK pathway inhibition that contributes to GC pathogenicity.


Asunto(s)
Adhesión Celular , Uniones Célula-Matriz , Neoplasias Gástricas , Humanos , Uniones Célula-Matriz/metabolismo , Uniones Célula-Matriz/patología , Progresión de la Enfermedad , Organoides/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
2.
STAR Protoc ; 5(3): 103203, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39058588

RESUMEN

Single-nuclei RNA sequencing (snRNA-seq) allows for obtaining gene expression profiles from frozen or hard-to-dissociate tissues at the single-nuclei level. Here, we describe a protocol to obtain snRNA-seq data of pancreatic tumors from orthotopically grafted organoid-derived mouse models. We provide details on the establishment of these mouse models, the isolation of single nuclei from pancreatic tumors, and the analysis of the snRNA-seq datasets. For complete details on the use and execution of this protocol, please refer to Mucciolo et al.1.

3.
Cancer Cell ; 42(1): 101-118.e11, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38157863

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. Cancer-associated fibroblasts (CAFs) are recognized potential therapeutic targets, but poor understanding of these heterogeneous cell populations has limited the development of effective treatment strategies. We previously identified transforming growth factor beta (TGF-ß) as a main driver of myofibroblastic CAFs (myCAFs). Here, we show that epidermal growth factor receptor/Erb-B2 receptor (EGFR/ERBB2) signaling is induced by TGF-ß in myCAFs through an autocrine process mediated by amphiregulin. Inhibition of this EGFR/ERBB2-signaling network in PDAC organoid-derived cultures and mouse models differentially impacts distinct CAF subtypes, providing insights into mechanisms underpinning their heterogeneity. Remarkably, EGFR-activated myCAFs promote PDAC metastasis in mice, unmasking functional significance in myCAF heterogeneity. Finally, analyses of other cancer datasets suggest that these processes might operate in other malignancies. These data provide functional relevance to myCAF heterogeneity and identify a candidate target for preventing tumor invasion in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Miofibroblastos/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Transducción de Señal , Factor de Crecimiento Transformador beta , Microambiente Tumoral
4.
Cell Stem Cell ; 23(6): 882-897.e11, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30344100

RESUMEN

Gastric cancer displays marked molecular heterogeneity with aggressive behavior and treatment resistance. Therefore, good in vitro models that encompass unique subtypes are urgently needed for precision medicine development. Here, we have established a primary gastric cancer organoid (GCO) biobank that comprises normal, dysplastic, cancer, and lymph node metastases (n = 63) from 34 patients, including detailed whole-exome and transcriptome analysis. The cohort encompasses most known molecular subtypes (including EBV, MSI, intestinal/CIN, and diffuse/GS, with CLDN18-ARHGAP6 or CTNND1-ARHGAP26 fusions or RHOA mutations), capturing regional heterogeneity and subclonal architecture, while their morphology, transcriptome, and genomic profiles remain closely similar to in vivo tumors, even after long-term culture. Large-scale drug screening revealed sensitivity to unexpected drugs that were recently approved or in clinical trials, including Napabucasin, Abemaciclib, and the ATR inhibitor VE-822. Overall, this new GCO biobank, with linked genomic data, provides a useful resource for studying both cancer cell biology and precision cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Bancos de Muestras Biológicas , Ensayos de Selección de Medicamentos Antitumorales , Organoides/efectos de los fármacos , Organoides/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Aminopiridinas/farmacología , Bencimidazoles/farmacología , Benzofuranos/farmacología , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Isoxazoles/farmacología , Masculino , Naftoquinonas/farmacología , Medicina de Precisión , Pirazinas/farmacología , Neoplasias Gástricas/clasificación , Neoplasias Gástricas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA