RESUMEN
This study aimed to investigate the beneficial effects of the oral administration of Lactobacillus brevis FZU0713-fermented Laminaria japonica (FLJ) on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet (HFD). The results demonstrated that the oral administration of FLJ significantly inhibited obesity and improved the serum and hepatic biochemical parameters in HFD-fed rats. Histopathological results also indicated that FLJ intervention could significantly reduce the accumulation of lipid droplets in the liver induced by HFD feeding. Furthermore, FLJ intervention up-regulated the fecal short-chain fatty acid (SCFA) levels (mainly acetate, propionate and isobutyrate) in HFD-fed rats. Intestinal microbiota profiling by 16S rRNA gene sequencing revealed that FLJ intervention increased the relative abundance of Akkermansia, Collinsella, Ruminococcaceae_UCG-013, Defluviitaleaceae_UCG-011, Intestinimonas, Actinomyces and Tyzzerella, but decreased the abundance of Flavonifractor, Collinsella, Sporosarcina and Lacticigenium. Based on Spearman's correlation, the fecal levels of TC, TG, acetic acid and butyric acid were positively correlated with the relative abundance of Akkermansia and Ruminococcaceae_NK4A214, but negatively correlated with the relative amount of Flavonifractor and Collinsella. The metabolic function of intestinal microbiota predicted by PICRUSt analysis of 16S rRNA gene sequences demonstrated that primary and secondary bile acid biosyntheses, fatty acid biosynthesis, taurine and hypotaurine metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis, etc. were significantly down-regulated after 8 weeks of FLJ intervention. Additionally, FLJ intervention significantly regulated the hepatic mRNA levels (including BSEP, CYP7A1, LDLR, HMGCR, CD36 and SREBP1-C) involved in lipid metabolism and bile acid homeostasis. In conclusion, these findings support the possibility that Laminaria japonica fermented with probiotic Lactobacillus has the potential to reduce the disturbance of lipid metabolism by regulating intestinal microflora and liver gene expression profiles, so it can be employed as a potential functional food to prevent hyperlipidemia.
Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal/efectos de los fármacos , Hiperlipidemias/metabolismo , Laminaria/metabolismo , Levilactobacillus brevis/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Administración Oral , Animales , Modelos Animales de Enfermedad , Fermentación , Hiperlipidemias/sangre , Masculino , RatasRESUMEN
In this study, we explored the effect of Lactobacillus plantarum FZU3013-fermented Laminaria japonica (LPLJ) supplementation to prevent hyperlipidaemia in rats fed with a high-fat diet (HFD). The results indicate that LPLJ supplementation improved serum and hepatic biochemical indicators (p < 0.05), elevated short-chain fatty acid levels, reduced HFD-induced accumulation of lipid droplets in the liver, modulated the relative abundance of some microbial phylotypes, and reduced hyperlipidaemia in HFD-fed rats by adjusting the aminoacyl-tRNA, phenylalanine, tyrosine, and tryptophan biosynthetic pathways, as well as the phenylalanine, D-glutamine and D-glutamate, and glutathione metabolic pathways. Additionally, hepatic mRNA levels of the genes involved in lipid metabolism and bile acid homeostasis were significantly reduced by LPLJ intervention (p < 0.05). These results suggest that LPLJ has a positive effect on modulating lipid metabolism and has the potential to be a functional food that can help prevent hyperlipidaemia.
RESUMEN
Macroalgae Laminaria japonica (MLJ) has been reported to exhibit various biological activities including improving immunity, anti-aging, anti-tumor, anti-atherosclerosis and anti-diabetic, but the protective mechanisms of MLJ consumption against non-alcoholic fatty liver disease (NAFLD) associated with hyperlipidemia remain poorly understood. This study demonstrated that MLJ consumption prevented high-fat diet (HFD)-induced NAFLD associated with hyperlipidemia in a rat model, and improved hyperlipidemia-related parameters, e.g. serum and hepatic lipid profiles. Moreover, histological analysis showed that MLJ reduced lipid deposition in adipocytes and hepatocytes compared with the HFD group. Such beneficial effects may be associated with the modulation of the intestinal microbiota, especially some key microbial phylotypes involved in lipid metabolism homeostasis. The underlying protective mechanisms of MLJ consumption against HFD-induced NAFLD associated with hyperlipidemia were also studied by ultra-high performance liquid chromatography with quadruple-time of flight mass spectrometry (UPLC-QTOF/MS)-based liver metabolomics coupled with pathway analysis. The metabolic pathway enrichment analysis of the differentially abundant hepatic metabolites indicated that primary bile acid biosynthesis metabolism and cysteine and methionine metabolism were the two main metabolic pathways altered by MLJ consumption when compared with the model group. The analysis of the transcription levels of liver-related genes by RT-qPCR and the expressions of liver-related proteins by immunohistochemistry (IHC) showed that MLJ consumption could regulate the levels of mRNA transcription and protein expression related to hepatic lipid metabolism. In short, this study indicates that MLJ could be developed as functional food supplement for the prevention or treatment of NAFLD associated with hyperlipidemia.