RESUMEN
As an E3 ubiquitin ligase, F-box and leucine-rich repeat protein 5 (FBXL5) participates in diverse biologic processes. However, the role of Fbxl5 in mouse oocyte meiotic maturation has not yet been fully elucidated. The present study revealed that mouse oocytes depleted of Fbxl5 were unable to complete meiosis, as Fbxl5 silencing led to oocyte meiotic failure with reduced rates of GVBD and polar body extrusion. In addition, Fbxl5 depletion induced aberrant mitochondrial dynamics as we noted the overproduction of reactive oxygen species (ROS) and the accumulation of phosphorylated γH2AX with Fbxl5 knockdown. We also found that Fbxl5-KD led to the abnormal accumulation of CITED2 proteins in mouse oocytes. Our in vitro ubiquitination assay showed that FBXL5 interacted with CITED2 and that it mediated the degradation of CITED2 protein through the ubiquitination-proteasome pathway. Collectively, our data revealed critical functions of FBXL5 in redox hemostasis and spindle assembly during mouse oocyte maturation.
Asunto(s)
Proteínas F-Box , Ubiquitina-Proteína Ligasas , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Meiosis , Proteínas/metabolismo , Oocitos/metabolismo , Homeostasis , Huso Acromático/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismoRESUMEN
The Yangyuan donkey is a domestic animal breed mainly distributed in the northwest region of Hebei Province. Donkey body shape is the most direct production index, can fully reflect the donkey's growth status, and is closely related to important economic traits. As one of the main breeding selection criteria, body size traits have been widely used to monitor animal growth and evaluate the selection response. Molecular markers genetically linked to body size traits have the potential to accelerate the breeding process of animals via marker-assisted selection. However, the molecular markers of body size in Yangyuan donkeys have yet to be explored. In this study, we performed a genome-wide association study to identify the genomic variations associated with body size traits in a population of 120 Yangyuan donkeys. We screened 16 single nucleotide polymorphisms that were significantly associated with body size traits. Some genes distributed around these significant SNPs were considered candidates for body size traits, including SMPD4, RPS6KA6, LPAR4, GLP2R, BRWD3, MAGT1, ZDHHC15, and CYSLTR1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these genes were mainly involved in the P13K-Akt signaling pathway, Rap1 signaling pathway, regulation of actin cytoskeleton, calcium signaling pathway, phospholipase D signaling pathway, and neuroactive ligand-receptor interactions. Collectively, our study reported on a list of novel markers and candidate genes associated with body size traits in donkeys, providing useful information for functional gene studies and offering great potential for accelerating Yangyuan donkey breeding.