Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Genet ; 60(6): 2299-2312, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35334059

RESUMEN

Viruses are the most common and abundant organisms in the marine environment. To better understand how cetaceans have adapted to this virus-rich environment, we compared cetacean virus-responsive genes to those from terrestrial mammals. We identified virus-responsive gene sequences in seven species of cetaceans, which we compared with orthologous sequences in seven terrestrial mammals. As a result of evolution analysis using the branch model and the branch-site model, 21 genes were selected using at least one model. IFN-ε, an antiviral cytokine expressed at mucous membranes, and its receptor IFNAR1 contain cetacean-specific amino acid substitutions that might change the interaction between the two proteins and lead to regulation of the immune system against viruses. Cetacean-specific amino acid substitutions in IL-6, IL-27, and the signal transducer and activator of transcription (STAT)1 are also predicted to alter the mucosal immune response of cetaceans. Since mucosal membranes are the first line of defense against the external environment and are involved in immune tolerance, our analysis of cetacean virus-responsive genes suggests that genes with cetacean-specific mutations in mucosal immunity-related genes play an important role in the protection and/or regulation of immune responses against viruses.


Asunto(s)
Cetáceos , Inmunidad Mucosa , Animales , Inmunidad Mucosa/genética , Filogenia , Cetáceos/genética , Mamíferos , Adaptación Fisiológica
2.
Cutan Ocul Toxicol ; 41(4): 273-284, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36097682

RESUMEN

PURPOSE: Numerous studies have linked particulate matter2.5 (PM2.5) to ocular surface diseases, but few studies have been conducted on the biological effect of PM2.5 on the cornea. The objective of this study was to evaluate the harmful effect of PM2.5 on primary rat corneal epithelial cells (RCECs) in vitro and identify the toxic mechanism involved. MATERIALS AND METHODS: Primary cultured RCECs were characterized by pan-cytokeratin (CK) staining. In PM2.5-exposed RCECs, cell viability, microarray gene expression, inflammatory cytokine levels, mitochondrial damage, DNA double-strand break, and signalling pathway were investigated. RESULTS: Exposure to PM2.5 induced cytotoxicity and morphological changes in RCECs. In addition, PM2.5 markedly up-regulated pro-inflammatory mediators but down-regulated the wound healing-related transforming growth factor-ß. Furthermore, PM2.5 promoted mitochondrial reactive oxygen species (ROS) production and mediated cellular damage to mitochondria and DNA, whereas these cellular alterations induced by PM2.5 were markedly suppressed by a potential ROS scavenger. Noteworthy, removal of ROS selectively down-regulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of the nuclear factor-κB (NF-κB) p65 in PM2.5-stimulated cells. Additionally, SB203580, a p38 MAPK inhibitor, markedly suppressed these PM2.5-mediated cellular dysfunctions. CONCLUSIONS: Taken together, our findings show that PM2.5 can promote the ROS/p38 MAPK/NF-κB signalling pathway and lead to mitochondrial damage and DNA double-strand break, which is ultimately caused inflammation and cytotoxicity in RCECs. These findings indicate that the ROS/p38 MAPK/NF-κB signalling pathway is one mechanism involved in PM2.5-induced ocular surface disorders.


Asunto(s)
Material Particulado , Proteínas Quinasas p38 Activadas por Mitógenos , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Material Particulado/toxicidad , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Células Epiteliales , Inflamación/inducido químicamente
3.
Arch Biochem Biophys ; 697: 108688, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33227289

RESUMEN

Coptisine is isoquinoline alkaloid derived from Coptidis Rhizoma and is known to have potential anti-cancer activity toward various carcinomas. Targeting autophagy is one of the main approaches for cancer therapy, but whether the anti-cancer efficacy of coptisine involves autophagy is still unclear. Therefore, this study investigated the effect of coptisine on autophagy in hepatocellular carcinoma (HCC) Hep3B cells, and identified the underlying mechanism. Our results showed that coptisine increased cytotoxicity and autophagic vacuoles in a concentration-dependent manner. Furthermore, the expressions of light chain 3 (LC3)-I/II, Beclin-1 and autophagy genes were markedly increased by coptisine, while the expression of p62 decreased. In addition, we found that pretreatment with bafilomycin A1, an inhibitor of autophagosome-lysosome fusion, markedly reduced coptisine-mediated autophagic cell death, but 3-methyladenine, an inhibitor for autophagosome formation did not. Moreover, our results showed that although coptisine up-regulated AMP-activated protein kinase (AMPK) that partially induced LC3-I/II, coptisine-mediated AMPK signaling did not directly regulate autophagic cell death. Additionally, we found that coptisine suppressed the phosphorylation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR), and this effect was notably enhanced by PI3K inhibitor LY294002. Meanwhile, coptisine significantly increased both the production of mitochondrial reactive oxygen species (ROS) and the recruitment of mitophagy-regulated proteins to mitochondria. Furthermore, N-acetylcysteine, a potential ROS scavenger, substantially suppressed the expression of mitophagy-regulated proteins and LC3 puncta by coptisine. Overall, our results demonstrate that coptisine-mediated autophagic cell death was regulated by PI3K/Akt/mTOR signaling and mitochondrial ROS production associated with mitochondrial dysfunction. Taken together, these findings suggest that coptisine exerts its anti-cancer effects through induction of autophagy in HCC Hep3B cells.


Asunto(s)
Autofagia/efectos de los fármacos , Berberina/análogos & derivados , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Berberina/farmacología , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Humanos , Neoplasias Hepáticas/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
Fish Shellfish Immunol ; 116: 84-90, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34214656

RESUMEN

Viral hemorrhagic septicemia virus (VHSV) causes severe mortality among more than 90 fish species. The 11 kb viral genome encodes six proteins including nonvirion protein (NV). In previous study, we reported that NV gene variations of VHSV decrease cellular energy metabolism. Among several NV mutant proteins, NV-S56L showed the highest cellular energy deprivation. Based on this finding, we further examined a molecular mechanism of one amino acid (S56L) change on differential cellular dysregulation. In the fish cells, the NV-S56L protein showed an increased level of cellular expression than normal and other mutant NV proteins without change of mRNA expression. Using cycloheximide treatment for exclude de novo NV protein expression, NV-S56L had an extensive half-life of intracellular protein. The proteasome inhibitor, MG-132, treatment recovered the all NV protein levels. The ubiquitination of NV was increased in the treatment of MG132 via inhibition of the ubiquitin/proteasome system process. Finally, increased protein stability of NV-S56L led to downregulation of NF-κB response immune gene expression. These results indicate that the prolonged protein stabilization of NV protein variant (NV-S56L) increases its pathological duration and might eventually lead to high virulence activity in the host fish cell.


Asunto(s)
Septicemia Hemorrágica Viral , Novirhabdovirus/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Peces , Expresión Génica/inmunología , Septicemia Hemorrágica Viral/genética , Septicemia Hemorrágica Viral/inmunología , Estabilidad Proteica
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072916

RESUMEN

Chronic inflammation, which is promoted by the production and secretion of inflammatory mediators and cytokines in activated macrophages, is responsible for the development of many diseases. Auranofin is a Food and Drug Administration-approved gold-based compound for the treatment of rheumatoid arthritis, and evidence suggests that auranofin could be a potential therapeutic agent for inflammation. In this study, to demonstrate the inhibitory effect of auranofin on chronic inflammation, a saturated fatty acid, palmitic acid (PA), and a low concentration of lipopolysaccharide (LPS) were used to activate RAW264.7 macrophages. The results show that PA amplified LPS signals to produce nitric oxide (NO) and various cytokines. However, auranofin significantly inhibited the levels of NO, monocyte chemoattractant protein-1, and pro-inflammatory cytokines, such as interleukin (IL)-1ß, tumor necrosis factor-α, and IL-6, which had been increased by co-treatment with PA and LPS. Moreover, the expression of inducible NO synthase, IL-1ß, and IL-6 mRNA and protein levels increased by PA and LPS were reduced by auranofin. In particular, the upregulation of NADPH oxidase (NOX) 4 and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) induced by PA and LPS were suppressed by auranofin. The binding between the toll-like receptor (TLR) 4 and auranofin was also predicted, and the release of NO and cytokines was reduced more by simultaneous treatment with auranofin and TLR4 inhibitor than by auranofin alone. In conclusion, all these findings suggested that auranofin had anti-inflammatory effects in PA and LPS-induced macrophages by interacting with TLR4 and downregulating the NOX4-mediated NF-κB signaling pathway.


Asunto(s)
Auranofina/farmacología , Inflamación/tratamiento farmacológico , NADPH Oxidasa 4/genética , Receptor Toll-Like 4/genética , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Ratones , FN-kappa B/genética , Ácido Palmítico/toxicidad , Células RAW 264.7
6.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572970

RESUMEN

MAF1 is a global suppressor of RNA polymerase III-dependent transcription, and is conserved from yeast to human. Growing evidence supports the involvement of MAF1 in the immune response of mammals, but its biological functions in fish are unknown. We isolated and characterized Maf1 from the olive flounder Paralichthys olivaceus (PoMaf1). The coding region of PoMaf1 comprised 738 bp encoding a 245-amino-acid protein. The deduced PoMAF1 amino acid sequence shared features with those of MAF1 orthologues from vertebrates. PoMaf1 mRNA was detected in all tissues examined, and the levels were highest in eye and muscle tissue. The PoMaf1 mRNA level increased during early development. In addition, the PoMaf1 transcript level decreased during viral hemorrhagic septicemia virus (VHSV) infection of flounder hirame natural embryo (HINAE) cells. To investigate the role of PoMaf1 in VHSV infection, single-cell-derived PoMaf1 knockout HINAE cells were generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) system, and cell clones with complete disruption of PoMaf1 were selected. PoMaf1 disruption increased the VHSV glycoprotein (G) mRNA levels during VHSV infection of HINAE cells, implicating PoMAF1 in the immune response to VSHV infection. To our knowledge, this is the first study to characterize fish Maf1, which may play a role in the response to viral infection.


Asunto(s)
Enfermedades de los Peces/genética , Proteínas de Peces/genética , Lenguado/genética , Septicemia Hemorrágica/veterinaria , Novirhabdovirus/fisiología , Proteínas Represoras/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Lenguado/inmunología , Lenguado/fisiología , Septicemia Hemorrágica/genética , Septicemia Hemorrágica/inmunología , Interacciones Huésped-Patógeno , Novirhabdovirus/inmunología , Filogenia , Proteínas Represoras/inmunología , Transcripción Genética
7.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946527

RESUMEN

Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Coptis/química , Coptis chinensis , Medicamentos Herbarios Chinos/farmacología , Femenino , Humanos , Neoplasias Hepáticas/metabolismo , Ratones Desnudos , Rizoma/química , Transducción de Señal/efectos de los fármacos
8.
Molecules ; 26(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806566

RESUMEN

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Caspasa 3/metabolismo , Puntos de Control del Ciclo Celular , Movimiento Celular , Triterpenos Pentacíclicos/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Apoptosis , Caspasa 3/genética , Proliferación Celular , Humanos , Técnicas In Vitro , Metástasis de la Neoplasia , Especies Reactivas de Oxígeno , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ácido Betulínico
9.
BMC Infect Dis ; 20(1): 552, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32727389

RESUMEN

BACKGROUND: Hepatitis B virus (HBV) infections are a severe health concern worldwide. HBV is a DNA virus with a rapid rate of mutation. Based on heterogeneity of the nucleotide sequence, the HBV strains are divided into nine genotypes, each with a characteristic geographical distribution. Identifying and tracking alterations of HBV genotypes is important in epidemiological and transmission studies, and contributes to predicting the risk for development of severe liver disease and response to antiviral treatment. The present study was undertaken to detect HBV genotypes and sub-genotypes in the general population of different states and regions in Myanmar. METHODS: In 2015, a total of 5547 adults of the general population, residing in seven states, seven regions and the Nay Pyi Taw Union Territory, were screened for Hepatitis B Surface antigen (HBsAg) by the immunochromatographic test (ICT). Of the 353 HBsAg positive samples, the HBVDNA was identified using polymerase chain reactions (PCR) targeting the DNA sequences encoding the Pre-S region. A total of 153 PCR positive samples were subsequently subjected to genotyping by partial genome sequencing in both directions. The resulting sequences were then edited, aligned, and compared with reference sequences using the National Centre for Biotechnology Information (NCBI) web-based genotyping tool. RESULTS: Three HBV genotypes (HBV genotype B, genotype C and genotype D) were detected in Myanmar, of which genotype HBV genotype C (66.7%) was the most prevalent, followed by HBV genotype D (32%) and HBV genotype B (1.3%). Sub-genotyping revealed a total of 7 variants within the B, C and D genotypes: 2 (B4 and B5) in HBV genotype B, 3 (C1, C5 and C7) in HBV genotype C, and 2 (D3 and D6) in HBV genotype D. CONCLUSION: HBV genotype C, sub-genotype C1 was predominantly distributed in all states and regions of Myanmar. This study is the first report on the nationwide distribution of HBV genotypes and sub-genotypes in Myanmar. We believe our findings will enable huge support for the hepatitis disease surveillance program, since HBV infection is one of the National Priority Diseases in Myanmar.


Asunto(s)
Genotipo , Virus de la Hepatitis B/genética , Hepatitis B/epidemiología , Adulto , Secuencia de Bases , Cromatografía de Afinidad , Estudios Transversales , ADN Viral/genética , Femenino , Hepatitis B/sangre , Hepatitis B/virología , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Humanos , Masculino , Persona de Mediana Edad , Mianmar/epidemiología , Filogenia , Reacción en Cadena de la Polimerasa , Prevalencia , Adulto Joven
10.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752099

RESUMEN

Hepatocellular carcinoma (HCC) has a high mortality rate worldwide, and treatment is very limited due to its high recurrence and low diagnosis rate, and therefore there is an increasing need to develop more effective drugs to treat HCC. Coptisine is one of the isoquinoline alkaloids, and it has various pharmacological effects. However, the evidence for the molecular mechanism of the anticancer efficacy is still insufficient. Therefore, this study investigated the antiproliferative effect of coptisine on human HCC Hep3B cells and identified the action mechanism. Our results showed that coptisine markedly increased DNA damage and apoptotic cell death, which was associated with induction of death receptor proteins. Coptisine also significantly upregulated expression of proapoptotic Bax protein, downregulated expression of anti-apoptotic Bcl-2 protein, and activated caspase-3, -8, and -9. In addition, coptisine remarkably increased the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and release of cytochrome c into the cytoplasm. However, N-acetylcysteine (NAC), a ROS scavenger, significantly attenuated the apoptosis-inducing effect of coptisine. It is worth noting that coptisine significantly upregulated phosphorylation of ROS-dependent c-Jun N-terminal kinase (JNK), whereas treatment with JNK inhibitor could suppress an apoptosis-related series event. Taken together, our results suggest that coptisine has an anticancer effect in Hep3B cells through ROS-mediated activation of the JNK signaling pathway.


Asunto(s)
Berberina/análogos & derivados , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Berberina/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Caspasa 3/genética , Línea Celular Tumoral , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Especies Reactivas de Oxígeno/metabolismo
11.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31387245

RESUMEN

Licochalcone A (LCA) is a chalcone that is predominantly found in the root of Glycyrrhiza species, which is widely used as an herbal medicine. Although previous studies have reported that LCA has a wide range of pharmacological effects, evidence for the underlying molecular mechanism of its anti-cancer efficacy is still lacking. In this study, we investigated the anti-proliferative effect of LCA on human bladder cancer cells, and found that LCA induced cell cycle arrest at G2/M phase and apoptotic cell death. Our data showed that LCA inhibited the expression of cyclin A, cyclin B1, and Wee1, but increased the expression of cyclin-dependent kinase (Cdk) inhibitor p21WAF1/CIP1, and increased p21 was bound to Cdc2 and Cdk2. LCA activated caspase-8 and -9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and also increased caspase-3 activity, a typical effect caspase, subsequently leading to poly (ADP-ribose) polymerase cleavage. Additionally, LCA increased the Bax/Bcl-2 ratio, and reduced the integrity of mitochondria, which contributed to the discharge of cytochrome c from the mitochondria to the cytoplasm. Moreover, LCA enhanced the intracellular levels of reactive oxygen species (ROS); however, the interruption of ROS generation using ROS scavenger led to escape from LCA-mediated G2/M arrest and apoptosis. Collectively, the present data indicate that LCA can inhibit the proliferation of human bladder cancer cells by inducing ROS-dependent G2/M phase arrest and apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Chalconas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Biomarcadores , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
12.
Gen Physiol Biophys ; 36(2): 117-128, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28218611

RESUMEN

Mammalian thioredoxin reductase (TrxR) plays a vital role in restoring cellular redox balance disrupted by reactive oxygen species (ROS) generation and oxidative damage. Here, we evaluated whether auranofin, a selective inhibitor of TrxR, could serve as a potential anti-cancer agent through its selective targeting of TrxR activity in Hep3B hepatocellular carcinoma cells. Auranofin treatment reduced the TrxR activity of these cells and induced apoptosis, which were accompanied by up-regulation of death receptors (DRs) and activation of caspases, as well as promotion of proteolytic degradation of poly(ADP-ribose)-polymerase. Treatment with a pan-caspase inhibitor reversed the auranofin-induced apoptosis and growth suppression, indicating that auranofin may induce apoptosis through a caspase-dependent mechanism involving both the intrinsic and extrinsic apoptotic pathways. Auranofin also significantly altered mitochondrial function, promoting mitochondrial membrane permeabilization and cytochrome c release by regulating Bcl-2 family proteins; these events were accompanied by an accumulation of ROS. Inhibition of ROS generation with the ROS quencher significantly attenuated the inactivation of TrxR in auranofin-treated cells and almost completely suppressed the auranofin-induced up-regulation of DRs and activation of caspases, thereby preventing auranofin-induced apoptosis and loss of cell viability. Taken together, these findings indicate that auranofin inhibition of TrxR activity in Hep3B cells activates ROS- and caspase-dependent apoptotic signaling pathways and triggers cancer cell death.


Asunto(s)
Apoptosis/efectos de los fármacos , Auranofina/administración & dosificación , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidores , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Resultado del Tratamiento
13.
Fish Shellfish Immunol ; 49: 66-78, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26631808

RESUMEN

The most fatal viral pathogen in olive flounder Paralichthys olivaceus, is viral hemorrhagic septicemia virus, which afflicts over 48 species of freshwater and marine fish. Here, we performed gene expression profiling on transcripts isolated from VHSV-infected olive flounder livers using a 13 K cDNA microarray chip. A total of 1832 and 1647 genes were upregulated and down-regulated over two-fold, respectively, after infection. A variety of immune-related genes showing significant changes in gene expression were identified in upregulated genes through gene ontology annotation. These genes were grouped into categories such as antibacterial peptide, antigen-recognition and adhesion molecules, apoptosis, cytokine-related pathway, immune system, stress response, and transcription factor and regulatory factors. To verify the cDNA microarray data, we performed quantitative real-time PCR, and the results were similar to the microarray data. In conclusion, these results may be useful for the identification of specific genes or for the diagnosis of VHSV infection in flounder.


Asunto(s)
Proteínas de Peces/genética , Lenguado , Regulación de la Expresión Génica , Septicemia Hemorrágica Viral/genética , Septicemia Hemorrágica Viral/inmunología , Novirhabdovirus/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Animales , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica/veterinaria , Hígado/inmunología , Hígado/virología , Análisis de Secuencia de ADN/veterinaria
14.
Biochem J ; 466(1): 115-21, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25428452

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and chronic hepatitis B virus (HBV) infection is the most common risk factor for HCC. The HBV proteins can induce oncogenic or synergy effects with a hyperproliferative response on transformation into HCC. CREBH (cAMP-responsive, element-binding protein H), activated by stress in the endoplasmic reticulum (ER), is an ER-resident transmembrane bZIP (basic leucine zipper) transcription factor that is specifically expressed in the liver. In the present study, we address the role played by CREBH activated by ER stress in HBV-induced hepatic cell proliferation. We confirmed CREBH activation by ER stress and showed that it occurred as a result of/via hepatitis B virus X (HBx)-induced ER stress. CREBH activated by HBx increased the expression of AP-1 target genes through c-Jun induction. Under pathological conditions such as liver damage or liver regeneration, activated CREBH may have an important role to play in hepatic inflammation and cell proliferation, as an insulin receptor with dual functions under these conditions. We showed that CREBH activated by HBx interacted with HBx protein, leading to a synergistic effect on the expression of AP-1 target genes and the proliferation of HCC cells and mouse primary hepatocytes. In conclusion, in HBV-infected hepatic cells or patients with chronic HBV, CREBH may induce proliferation of hepatic cells in co-operation with HBx, resulting in HCC.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Regulación Neoplásica de la Expresión Génica , Virus de la Hepatitis B/genética , Hepatocitos/metabolismo , Transactivadores/genética , Factor de Transcripción AP-1/genética , Animales , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Estrés del Retículo Endoplásmico/genética , Genes Reporteros , Células Hep G2 , Virus de la Hepatitis B/metabolismo , Hepatocitos/patología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Cultivo Primario de Células , Unión Proteica , Transducción de Señal , Transactivadores/metabolismo , Factor de Transcripción AP-1/metabolismo , Proteínas Reguladoras y Accesorias Virales
15.
J Hepatol ; 63(2): 477-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25646886

RESUMEN

BACKGROUND & AIMS: Most studies on the role of STAMP2 in metabolism have used adipose tissue. Little knowledge exists concerning the role of STAMP2 in the liver, which is a metabolically central target. We hypothesized that STAMP2 is involved in non-alcoholic fatty liver disease (NAFLD) pathogenesis. METHODS: We examined our hypothesis using human NAFLD patient pathology samples and a high-fat diet (HFD)-induced NAFLD mouse model. The molecular mechanism underlying hepatic STAMP2-mediated lipid imbalance was explored using an oleic acid (OA)-induced NAFLD in vitro model. RESULTS: Noticeably, the expression level of STAMP2 protein was reduced in the livers obtained from NAFLD patients and HFD-induced NAFLD mice. In vivo knockdown of hepatic STAMP2 by siRNA accelerated hepatic steatosis and insulin resistance in mice fed a HFD. Conversely, the delivery of adenoviral STAMP2 (Ad-STAMP2) improved hepatic steatosis in HFD-induced NAFLD mice. The expression of lipogenic or adipogenic factors was increased in both in vitro and in vivo NAFLD models but was reversed by Ad-STAMP2. Adenoviral overexpression of STAMP2 improved insulin resistance in the HFD-induced NAFLD mice. In vivo and in vitro assays demonstrated that STAMP2 modulates insulin sensitivity and glucose metabolism and that STAMP2 counteracts OA-induced insulin resistance by modulating insulin receptor substrate-1 stability. CONCLUSIONS: The present study revealed that hepatic STAMP2 plays a pivotal role in preventing HFD-induced NAFLD and that STAMP2 overexpression improves hepatic steatosis and insulin resistance in NAFLD. Our findings indicate that STAMP2 may represent a suitable target for interventions targeting NAFLD.


Asunto(s)
Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , ARN/genética , Animales , Biopsia , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Metabolismo de los Lípidos , Hígado/patología , Masculino , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
J Microbiol ; 61(7): 693-702, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37646922

RESUMEN

Fibroblast growth factor 11 (FGF11) is a member of the intracellular FGF family, which shows different signal transmission compared with other FGF superfamily members. The molecular function of FGF11 is not clearly understood. In this study, we identified the inhibitory effect of FGF11 on hepatitis B virus (HBV) gene expression through transcriptional suppression. FGF11 decreased the mRNA and protein expression of HBV genes in liver cells. While the nuclear receptor FXRα1 increased HBV promoter transactivation, FGF11 decreased the FXRα-mediated gene induction of the HBV promoter by the FXRα agonist. Reduced endogenous levels of FXRα by siRNA and the dominant negative mutant protein (aa 1-187 without ligand binding domain) of FXRα expression indicated that HBV gene suppression by FGF11 is dependent on FXRα inhibition. In addition, FGF11 interacts with FXRα protein and reduces FXRα protein stability. These results indicate that FGF11 inhibits HBV replicative expression through the liver cell-specific transcription factor, FXRα, and suppresses HBV promoter activity. Our findings may contribute to the establishment of better regimens for the treatment of chronic HBV infections by including FGF11 to alter the bile acid mediated FXR pathway.


Asunto(s)
Ácidos y Sales Biliares , Virus de la Hepatitis B , Virus de la Hepatitis B/genética , Factores de Crecimiento de Fibroblastos/genética , Expresión Génica , Hepatocitos
17.
J Microbiol Biotechnol ; 33(5): 591-599, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-36859395

RESUMEN

Fisetin is a bioactive flavonol molecule and has been shown to have antioxidant potential, but its efficacy has not been fully validated. The aim of the present study was to investigate the protective efficacy of fisetin on C2C12 murine myoblastjdusts under hydrogen peroxide (H2O2)-induced oxidative damage. The results revealed that fisetin significantly weakened H2O2-induced cell viability inhibition and DNA damage while blocking reactive oxygen species (ROS) generation. Fisetin also significantly alleviated cell cycle arrest by H2O2 treatment through by reversing the upregulation of p21WAF1/CIP1 expression and the downregulation of cyclin A and B levels. In addition, fisetin significantly blocked apoptosis induced by H2O2 through increasing the Bcl-2/Bax ratio and attenuating mitochondrial damage, which was accompanied by inactivation of caspase-3 and suppression of poly(ADP-ribose) polymerase cleavage. Furthermore, fisetin-induced nuclear translocation and phosphorylation of Nrf2 were related to the increased expression and activation of heme oxygenase-1 (HO-1) in H2O2-stimulated C2C12 myoblasts. However, the protective efficacy of fisetin on H2O2-mediated cytotoxicity, including cell cycle arrest, apoptosis and mitochondrial dysfunction, were greatly offset when HO-1 activity was artificially inhibited. Therefore, our results indicate that fisetin as an Nrf2 activator effectively abrogated oxidative stress-mediated damage in C2C12 myoblasts.


Asunto(s)
Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Peróxido de Hidrógeno/metabolismo , Hemo-Oxigenasa 1/genética , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Flavonoles/farmacología , Flavonoles/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mioblastos/metabolismo , Apoptosis
18.
Environ Toxicol Pharmacol ; 102: 104211, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37423393

RESUMEN

Environmental exposure to urban particulate matter (UPM) is a serious health concern worldwide. Although several studies have linked UPM to ocular diseases, no study has reported effects of UPM exposure on senescence in retinal cells. Therefore, this study aimed to investigate the effects of UPM on senescence and regulatory signaling in human retinal pigment epithelial ARPE-19 cells. Our study demonstrated that UPM significantly promoted senescence, with increased senescence-associated ß-galactosidase activity. Moreover, both mRNA and protein levels of senescence markers (p16 and p21) and the senescence-associated secretory phenotype, including IL-1ß, matrix metalloproteinase-1, and -3 were upregulated. Notably, UPM increased mitochondrial reactive oxygen species-dependent nuclear factor-kappa B (NF-κB) activation during senescence. In contrast, use of NF-κB inhibitor Bay 11-7082 reduced the level of senescence markers. Taken together, our results provide the first in vitro preliminary evidence that UPM induces senescence by promoting mitochondrial oxidative stress-mediated NF-κB activation in ARPE-19 cells.


Asunto(s)
FN-kappa B , Material Particulado , Humanos , Material Particulado/toxicidad , FN-kappa B/metabolismo , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Senescencia Celular , Pigmentos Retinianos/metabolismo , Pigmentos Retinianos/farmacología , Células Epiteliales/metabolismo
19.
Gen Comp Endocrinol ; 175(1): 39-47, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22051321

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that play key roles in lipid and energy homeostasis. Paralichthys olivaceus PPARα (PoPPARα) cDNA was isolated by initial reverse transcription-polymerase chain reaction (RT-PCR) using conserved region among fish species and rapid amplification of cDNA ends (RACE). The full-length of PoPPARα cDNA is 2040-bp long encoding a polypeptide with 505 amino acids and containing a DNA binding domain (C4-type zinc finger) and a ligand-binding domain. PoPPARα was detected from 1 day post-hatch and was highly expressed in the stomach, liver, and intestine of continuously fed flounder, approximately 16 cm in size. PoPPARα mRNA expression was down-regulated in the kidney, stomach, and liver of the 4.5-month-old flounder after a 30 day food-deprivation period. PoPPARα activates the PPAR response element (PPRE)-driven reporter, and treatment with Wy14643, a PPARα agonist, augmented PoPPARα-stimulated peroxisome proliferator response element activity in HINAE and HepG2 cells. PoPPARα activated the expression of fatty acid ß-oxidation related genes such as carnitine palmitoyltransferase 1A, medium chain acyl-CoA dehydrogenase, and acyl-CoA oxidase 1 and inhibited the expression of sterol regulatory element binding protein and fatty acid synthase by competitively inhibiting LXR/RXR heterodimer formation. These results suggest that PoPPARα plays an important role in lipid metabolism of olive flounder and that it is functionally and evolutionarily conserved in olive flounder and mammals.


Asunto(s)
Lenguado/fisiología , Metabolismo de los Lípidos/fisiología , PPAR alfa/genética , PPAR alfa/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Metabolismo Energético/fisiología , Lenguado/embriología , Homeostasis/fisiología , Datos de Secuencia Molecular , PPAR alfa/análisis
20.
Biochem J ; 435(2): 431-9, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21244365

RESUMEN

Chronic hepatitis B is a disease of the liver that can progress to cirrhosis and liver cancer. The HBx (hepatitis B virus X) protein of hepatitis B virus is a multifunctional regulator that induces ER (endoplasmic reticulum) stress by previously unknown mechanisms. ER stress plays a critical role in inflammatory induction and COX2 (cyclo-oxygenase 2) is an important mediator of this inflammation. In the present study, we demonstrate the molecular mechanisms of HBx on induction of ER stress and COX2 expression. In addition, HBx reduced expression of enzymes which are involved in mitochondrial ß-oxidation of fatty acids and the mitochondrial inner membrane potential. The reduction in intracellular ATP levels by HBx induced the unfolded protein response and COX2 expression through the eIF2α (eukaryotic initiation factor 2α)/ATF4 (activating transcription factor 4) pathway. We confirmed that ATF4 binding to the COX2 promoter plays a critical role in HBx-mediated COX2 induction. The results of the present study suggest that HBV infection contributes to induction of hepatic inflammation through dysfunction of cellular organelles including the ER and mitochondria.


Asunto(s)
Factor de Transcripción Activador 4/fisiología , Ciclooxigenasa 2/genética , Retículo Endoplásmico/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Transactivadores/farmacología , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Transfección , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología , Regulación hacia Arriba/efectos de los fármacos , Proteínas Reguladoras y Accesorias Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA