Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896513

RESUMEN

Natural gas (NG) leaks from below-ground pipelines pose safety, economic, and environmental hazards. Despite walking surveys using handheld methane (CH4) detectors to locate leaks, accurately triaging the severity of a leak remains challenging. It is currently unclear whether CH4 detectors used in walking surveys could be used to identify large leaks that require an immediate response. To explore this, we used above-ground downwind CH4 concentration measurements made during controlled emission experiments over a range of environmental conditions. These data were then used as the input to a novel modeling framework, the ESCAPE-1 model, to estimate the below-ground leak rates. Using 10-minute averaged CH4 mixing/meteorological data and filtering out wind speed < 2 m s-1/unstable atmospheric data, the ESCAPE-1 model estimates small leaks (0.2 kg CH4 h-1) and medium leaks (0.8 kg CH4 h-1) with a bias of -85%/+100% and -50%/+64%, respectively. Longer averaging (≥3 h) results in a 55% overestimation for small leaks and a 6% underestimation for medium leaks. These results suggest that as the wind speed increases or the atmosphere becomes more stable, the accuracy and precision of the leak rate calculated by the ESCAPE-1 model decrease. With an uncertainty of ±55%, our results show that CH4 mixing ratios measured using industry-standard detectors could be used to prioritize leak repairs.

2.
Sensors (Basel) ; 22(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36236509

RESUMEN

Methane (CH4), a powerful greenhouse gas (GHG), has been identified as a key target for emission reduction in the Paris agreement, but it is not currently clear where efforts should be focused to make the greatest impact. Currently, activity data and standard emission factors (EF) are used to generate GHG emission inventories. Many of the EFs are globally uniform and do not account for regional variability in industrial or agricultural practices and/or regulation. Regional EFs can be derived from top-down emissions measurements and used to make bespoke regional GHG emission inventories that account for geopolitical and social variability. However, most large-scale top-down approaches campaigns require significant investment. To address this, lower-cost driving surveys (DS) have been identified as a viable alternative to more established methods. DSs can take top-down measurements of many emission sources in a relatively short period of time, albeit with a higher uncertainty. To investigate the use of a portable measurement system, a 2260 km DS was conducted throughout the Denver-Julesburg Basin (DJB). The DJB covers an area of 8000 km2 north of Denver, CO and is densely populated with CH4 emission sources, including oil and gas (O and G) operations, agricultural operations (AGOs), lakes and reservoirs. During the DS, 157 individual CH4 emission sources were detected; 51%, 43% and 4% of sources were AGOs, O and G operations, and natural sources, respectively. Methane emissions from each source were quantified using downwind concentration and meteorological data and AGOs and O and G operations represented nearly all the CH4 emissions in the DJB, accounting for 54% and 37% of the total emission, respectively. Operations with similar emission sources were grouped together and average facility emission estimates were generated. For agricultural sources, emissions from feedlot cattle, dairy cows and sheep were estimated at 5, 31 and 1 g CH4 head-1 h-1, all of which agreed with published values taken from focused measurement campaigns. Similarly, for O and G average emissions for well pads, compressor stations and gas processing plants (0.5, 14 and 110 kg CH4 facility-1 h-1) were in reasonable agreement with emission estimates from intensive measurement campaigns. A comparison of our basin wide O and G emissions to measurements taken a decade ago show a decrease of a factor of three, which can feasibly be explained by changes to O and G regulation over the past 10 years, while emissions from AGOs have remained constant over the same time period. Our data suggest that DSs could be a low-cost alternative to traditional measurement campaigns and used to screen many emission sources within a region to derive representative regionally specific and time-sensitive EFs. The key benefit of the DS is that many regions can be screened and emission reduction targets identified where regional EFs are noticeably larger than the regional, national or global averages.


Asunto(s)
Contaminantes Atmosféricos , Gases de Efecto Invernadero , Contaminantes Atmosféricos/análisis , Animales , Bovinos , Femenino , Metano , Ovinos
3.
Sci Total Environ ; 922: 170990, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38367720

RESUMEN

Recent studies indicate emission factors used to generate bottom-up methane inventories may have considerable regional variability. The US's Environmental Protection Agency's emission factors for plugged and unplugged abandoned oil and gas wells are largely based on measurement of historic wells and estimated at 0.4 g and 31 g CH4 well-1 h-1, respectively. To investigate if these are representative of wells more recently abandoned, methane emissions were measured from 128 plugged and 206 unplugged abandoned wells in Colorado, finding the first super-emitting abandoned well (76 kg CH4 well-1 h-1) and average emissions of 0 and 586 g CH4 well-1 h-1, respectively. Combining these with other states' measurements, we update the US emission factors to 1 and 198 g CH4 well-1 h-1, respectively. Correspondingly, annual methane emissions from the 3.4 million abandoned wells in the US are estimated at between 2.6 Tg, following current methodology, and 1.1 Tg, where emissions are disaggregated for well-type. In conclusion, this study identifies a new abandoned well-type, recently-producing orphaned, that contributes 74 % to the total abandoned wells methane emissions. Including this new well-type in the bottom-up inventory suggests abandoned well emissions equate to between 22 and 49 % of total emissions from US active oil and gas production operations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA