Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
BMC Microbiol ; 23(1): 364, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008714

RESUMEN

BACKGROUND: Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS: CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS: These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.


Asunto(s)
Proteínas de Escherichia coli , Mucositis , Probióticos , Ratones , Humanos , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Inflamación , Probióticos/uso terapéutico
2.
J Nutr ; 153(10): 2808-2826, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543213

RESUMEN

BACKGROUND: Milk composition is complex and includes numerous components essential for offspring growth and development. In addition to the high abundance of miR-30b microRNA, milk produced by the transgenic mouse model of miR-30b-mammary deregulation displays a significantly altered fatty acid profile. Moreover, wild-type adopted pups fed miR-30b milk present an early growth defect. OBJECTIVE: This study aimed to investigate the consequences of miR-30b milk feeding on the duodenal development of wild-type neonates, a prime target of suckled milk, along with comprehensive milk phenotyping. METHODS: The duodenums of wild-type pups fed miR-30b milk were extensively characterized at postnatal day (PND)-5, PND-6, and PND-15 using histological, transcriptomic, proteomic, and duodenal permeability analyses and compared with those of pups fed wild-type milk. Milk of miR-30b foster dams collected at mid-lactation was extensively analyzed using proteomic, metabolomic, and lipidomic approaches and hormonal immunoassays. RESULTS: At PND-5, wild-type pups fed miR-30b milk showed maturation of their duodenum with 1.5-fold (P < 0.05) and 1.3-fold (P < 0.10) increased expression of Claudin-3 and Claudin-4, respectively, and changes in 8 duodenal proteins (P < 0.10), with an earlier reduction in paracellular and transcellular permeability (183 ng/mL fluorescein sulfonic acid [FSA] and 12 ng/mL horseradish peroxidase [HRP], respectively, compared with 5700 ng/mL FSA and 90 ng/mL HRP in wild-type; P < 0.001). Compared with wild-type milk, miR-30b milk displayed an increase in total lipid (219 g/L compared with 151 g/L; P < 0.05), ceramide (17.6 µM compared with 6.9 µM; P < 0.05), and sphingomyelin concentrations (163.7 µM compared with 76.3 µM; P < 0.05); overexpression of 9 proteins involved in the gut barrier (P < 0.1); and higher insulin and leptin concentrations (1.88 ng/mL and 2.04 ng/mL, respectively, compared with 0.79 ng/mL and 1.06 ng/mL; P < 0.01). CONCLUSIONS: miR-30b milk displays significant changes in bioactive components associated with neonatal duodenal integrity and maturation, which could be involved in the earlier intestinal closure phenotype of the wild-type pups associated with a lower growth rate.

3.
J Math Biol ; 84(7): 60, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737118

RESUMEN

Human health and physiology is strongly influenced by interactions between human cells and intestinal microbiota in the gut. In mammals, the host-microbiota crosstalk is mainly mediated by regulations at the intestinal crypt level: the epithelial cell turnover in crypts is directly influenced by metabolites produced by the microbiota. Conversely, enterocytes maintain hypoxia in the gut, favorable to anaerobic bacteria which dominate the gut microbiota. We constructed an individual-based model of epithelial cells interacting with the microbiota-derived chemicals diffusing in the crypt lumen. This model is formalized as a piecewise deterministic Markov process (PDMP). It accounts for local interactions due to cell contact (among which are mechanical interactions), for cell proliferation, differentiation and extrusion which are regulated spatially or by chemicals concentrations. It also includes chemicals diffusing and reacting with cells. A deterministic approximated model is also introduced for a large population of small cells, expressed as a system of porous media type equations. Both models are extensively studied through numerical exploration. Their biological relevance is thoroughly assessed by recovering bio-markers of an healthy crypt, such as cell population distribution along the crypt or population turn-over rates. Simulation results from the deterministic model are compared to the PMDP model and we take advantage of its lower computational cost to perform a sensitivity analysis by Morris method. We finally use the crypt model to explore butyrate supplementation to enhance recovery after infections by enteric pathogens.


Asunto(s)
Microbiota , Animales , Diferenciación Celular , Células Epiteliales , Humanos , Mamíferos , Morfolinas
4.
Vet Res ; 52(1): 33, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632315

RESUMEN

In livestock species, the monolayer of epithelial cells covering the digestive mucosa plays an essential role for nutrition and gut barrier function. However, research on farm animal intestinal epithelium has been hampered by the lack of appropriate in vitro models. Over the past decade, methods to culture livestock intestinal organoids have been developed in pig, bovine, rabbit, horse, sheep and chicken. Gut organoids from farm animals are obtained by seeding tissue-derived intestinal epithelial stem cells in a 3-dimensional culture environment reproducing in vitro the stem cell niche. These organoids can be generated rapidly within days and are formed by a monolayer of polarized epithelial cells containing the diverse differentiated epithelial progeny, recapitulating the original structure and function of the native epithelium. The phenotype of intestinal organoids is stable in long-term culture and reflects characteristics of the digestive segment of origin. Farm animal intestinal organoids can be amplified in vitro, cryopreserved and used for multiple experiments, allowing an efficient reduction of the use of live animals for experimentation. Most of the studies using livestock intestinal organoids were used to investigate host-microbe interactions at the epithelial surface, mainly focused on enteric infections with viruses, bacteria or parasites. Numerous other applications of farm animal intestinal organoids include studies on nutrient absorption, genome editing and bioactive compounds screening relevant for agricultural, veterinary and biomedical sciences. Further improvements of the methods used to culture intestinal organoids from farm animals are required to replicate more closely the intestinal tissue complexity, including the presence of non-epithelial cell types and of the gut microbiota. Harmonization of the methods used to culture livestock intestinal organoids will also be required to increase the reproducibility of the results obtained in these models. In this review, we summarize the methods used to generate and cryopreserve intestinal organoids in farm animals, present their phenotypes and discuss current and future applications of this innovative culture system of the digestive epithelium.


Asunto(s)
Animales Domésticos/anatomía & histología , Técnicas de Cultivo de Célula/veterinaria , Criopreservación/veterinaria , Intestino Grueso/citología , Intestino Delgado/citología , Organoides/citología , Animales , Técnicas de Cultivo de Célula/métodos , Criopreservación/métodos , Células Epiteliales/citología , Mucosa Intestinal/citología
5.
Appl Microbiol Biotechnol ; 104(23): 10233-10247, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33085024

RESUMEN

In vitro gut models, such as the mucosal artificial colon (M-ARCOL), provide timely and cost-efficient alternatives to in vivo assays allowing mechanistic studies to better understand the role of human microbiome in health and disease. Using such models inoculated with human fecal samples may require a critical step of stool storage. The effects of preservation methods on microbial structure and function in in vitro gut models have been poorly investigated. This study aimed to assess the impact of three commonly used preserving methods, compared with fresh fecal samples used as a control, on the kinetics of lumen and mucus-associated microbiota colonization in the M-ARCOL model. Feces from two healthy donors were frozen 48 h at - 80 °C with or without cryoprotectant (10% glycerol) or lyophilized with maltodextrin and trehalose prior to inoculation of four parallel bioreactors (e.g., fresh stool, raw stool stored at - 80 °C, stool stored at - 80 °C with glycerol and lyophilized stool). Microbiota composition and diversity (qPCR and 16S metabarcoding) as well as metabolic activity (gases and short chain fatty acids) were monitored throughout the fermentation process (9 days). All the preservative treatments allowed the maintaining inside the M-ARCOL of a complex and functional microbiota, but considering stabilization time of microbial profiles and activities (and not technical constraints associated with the supply of frozen material), our results highlighted 48 h freezing at - 80 °C without cryoprotectant as the most efficient method. These results will help scientists to determine the most accurate method for fecal storage prior to inoculation of in vitro gut microbiome models. KEY POINTS: • In vitro ARCOL model reproduces luminal and mucosal human microbiome. • Short-term storage of fecal sample influences microbial stabilization and activity. • 48 h freezing at - 80°C: most efficient method to preserve microbial ecosystem. • Scientific and technical requirements: influencers of preservation method.


Asunto(s)
Microbioma Gastrointestinal , Colon , Heces , Humanos , ARN Ribosómico 16S/genética , Manejo de Especímenes
6.
J Nutr ; 147(3): 361-366, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28148683

RESUMEN

Background: Active gluconeogenesis is essential to maintain blood glucose concentrations in neonatal piglets because of the high glucose requirements after birth. In several adult mammals, the liver, kidney, and possibly the gut may exhibit gluconeogenesis during fasting and insulinopenic conditions. During the postnatal period, the intestine expresses all of the gluconeogenic enzymes, suggesting the potential for gluconeogenesis. Galactose in milk is a potential gluconeogenic precursor for newborns.Objective: Our aim was to quantify the rate of intestinal glucose production from galactose in piglets compared with the overall rate of glucose production.Methods: A single bolus of [U-14C]-galactose was injected into 2-d-old piglets (females and males; mean ± SEM weight: 1.64 ± 0.07 kg) through a gastric catheter. Galactosemia, glycemia, and glucose turnover rate (assessed by monitoring d-[6-3H]-glucose) were monitored. Intestinal glucose production from [U-14C]-galactose was calculated from [U-14C]-glucose appearance in the blood and isotopic dilution. Galactose metabolism was also investigated in vitro in enterocytes isolated from 2-d-old piglets that were incubated with increasing concentrations of galactose.Results: In piglet enterocytes, galactose metabolism was active (mean ± SEM maximum rate of reaction: 2.26 ± 0.45 nmol · min-1 · 106 cells-1) and predominantly oriented toward lactate and pyruvate production (74.0% ± 14.5%) rather than glucose production (26.0% ± 14.5%). In conscious piglets, gastric galactose administration led to an increase in arterial galactosemia (from 0 to 1.0 ± 0.8 mmol/L) and glycemia (35% ± 12%). The initial increase in arterial glycemia after galactose administration was linked to an increase in glucose production rate (33% ± 15%) rather than to a decrease in glucose utilization rate (3% ± 6%). The contribution of intestinal glucose production from galactose was <10% of total glucose production in 2-d-old piglets.Conclusion: Our results indicate that there is a low contribution to glucose homeostasis from intestinal gluconeogenesis in 2-d-old piglets.


Asunto(s)
Glucemia , Gluconeogénesis/fisiología , Homeostasis/fisiología , Porcinos/fisiología , Animales , Animales Recién Nacidos , Femenino , Galactosa/sangre , Galactosa/química , Galactosa/metabolismo , Glucosa/química , Glucosa/metabolismo , Masculino
7.
Appl Microbiol Biotechnol ; 101(14): 5709-5721, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28540425

RESUMEN

The ability of Lactococcus lactis to adhere to the intestinal mucosa can potentially prolong the contact with the host, and therefore favour its persistence in the gut. In the present study, the contribution of plasmid-encoded factors to the adhesive and transit properties of the L. lactis subsp. cremoris IBB477 strain was investigated. Plasmid-cured derivatives as well as deletion mutants were obtained and analysed. Adhesion tests were performed using non-coated polystyrene plates, plates coated with mucin or fibronectin and mucus-secreting HT29-MTX intestinal epithelial cells. The results indicate that two plasmids, pIBB477a and b, are involved in adhesion of the IBB477 strain. One of the genes localised on plasmid pIBB477b (AJ89_14230), which encodes cell wall-associated peptidase S8 (PrtP), mediates adhesion of the IBB477 strain to bare, mucin- and fibronectin-coated polystyrene, as well as to HT29-MTX cells. Interactions between bacteria and mucus secreted by HT29-MTX cells were further investigated by fluorescent staining and confocal microscopy. Confocal images showed that IBB477 forms dense clusters embedded in secreted mucus. Finally, the ability of IBB477 strain and its ΔprtP deletion mutant to colonise the gastrointestinal tract of conventional C57Bl/6 mice was determined. Both strains were present in the gut for up to 72 h. In summary, adhesion and persistence of IBB477 were analysed by in vitro and in vivo approaches, respectively. Our studies revealed that plasmidic genes encoding cell surface proteins are more involved in the adhesion of IBB477 strain than in the ability to confer a selective advantage in the gut.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Mucosa Intestinal/microbiología , Lactococcus lactis/enzimología , Péptido Hidrolasas/metabolismo , Plásmidos/genética , Animales , Proteínas Bacterianas/genética , Células HT29 , Humanos , Mucosa Intestinal/citología , Lactococcus lactis/genética , Lactococcus lactis/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Moco/microbiología , Péptido Hidrolasas/genética , Eliminación de Secuencia
8.
FASEB J ; 27(2): 645-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118025

RESUMEN

Interaction between the gut microbiota and the host starts immediately after birth with the progressive colonization of the sterile intestine. Our aim was to investigate the interactions taking place in the colonic epithelium after the first exposure to gut microbiota. Germ-free (GF) rats were inoculated with two different microbiotas: the first, obtained from suckling rats, was rich in primocolonizing bacteria and the second, obtained from adult rats, was representative of a mature microbiota. Once transferred into GF rats, these two microbiotas evolved such that they converged, and recapitulated the primocolonization pattern, mimicking the chronological scheme of implantation following birth. The two microbiotas induced common responses in the colonic epithelium: a transitory proliferative phase followed by a compensatory phase characterized by increases in the abundance of p21(Cip1) and p27(Kip1) and in the number of goblet cells. The effects of the two microbiotas diverged only through their effects on colonic transporters. Analyses of solute carriers and aquaporins revealed that functional maturation was more pronounced following exposure to adult microbiota than suckling microbiota. The colon matured in parallel with the evolution of the microbiota composition, and we therefore suggest a link between intestinal events regulating homeostasis of the colon and modulation of microbial composition.


Asunto(s)
Colon/crecimiento & desarrollo , Colon/microbiología , Metagenoma , Animales , Diferenciación Celular , Proliferación Celular , Colon/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Genes Bacterianos , Vida Libre de Gérmenes , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Metagenoma/genética , Ratas , Ratas Endogámicas F344 , Factores de Tiempo
9.
BMC Biol ; 11: 61, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23692866

RESUMEN

BACKGROUND: The intestinal mucus layer plays a key role in the maintenance of host-microbiota homeostasis. To document the crosstalk between the host and microbiota, we used gnotobiotic models to study the influence of two major commensal bacteria, Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii, on this intestinal mucus layer. B. thetaiotaomicron is known to use polysaccharides from mucus, but its effect on goblet cells has not been addressed so far. F. prausnitzii is of particular physiological importance because it can be considered as a sensor and a marker of human health. We determined whether B. thetaiotaomicron affected goblet cell differentiation, mucin synthesis and glycosylation in the colonic epithelium. We then investigated how F. prausnitzii influenced the colonic epithelial responses to B. thetaiotaomicron. RESULTS: B. thetaiotaomicron, an acetate producer, increased goblet cell differentiation, expression of mucus-related genes and the ratio of sialylated to sulfated mucins in mono-associated rats. B. thetaiotaomicron, therefore, stimulates the secretory lineage, favoring mucus production. When B. thetaiotaomicron was associated with F. prausnitzii, an acetate consumer and a butyrate producer, the effects on goblet cells and mucin glycosylation were diminished. F. prausnitzii, by attenuating the effects of B. thetaiotaomicron on mucus, may help the epithelium to maintain appropriate proportions of different cell types of the secretory lineage. Using a mucus-producing cell line, we showed that acetate up-regulated KLF4, a transcription factor involved in goblet cell differentiation. CONCLUSIONS: B. thetaiotaomicron and F. prausnitzii, which are metabolically complementary, modulate, in vivo, the intestinal mucus barrier by modifying goblet cells and mucin glycosylation. Our study reveals the importance of the balance between two main commensal bacteria in maintaining colonic epithelial homeostasis via their respective effects on mucus.


Asunto(s)
Bacteroides/fisiología , Colon/microbiología , Células Caliciformes/microbiología , Mucosa Intestinal/microbiología , Moco/metabolismo , Polisacáridos/biosíntesis , Ruminococcus/fisiología , Acetatos/metabolismo , Animales , Bacteroides/ultraestructura , Infecciones por Bacteroides/microbiología , Infecciones por Bacteroides/patología , Diferenciación Celular , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Glicosilación , Células Caliciformes/metabolismo , Células Caliciformes/patología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/patología , Células HT29 , Interacciones Huésped-Patógeno/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Factor 4 Similar a Kruppel , Moco/microbiología , Ratas , Transducción de Señal , Factores de Tiempo
10.
Gut Microbes ; 16(1): 2361660, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935764

RESUMEN

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Asunto(s)
Proteínas de Transporte de Catión , Duodeno , Microbioma Gastrointestinal , Hepcidinas , Hierro de la Dieta , Hígado , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Hierro de la Dieta/metabolismo , Hierro de la Dieta/administración & dosificación , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Hígado/metabolismo , Hígado/microbiología , Duodeno/metabolismo , Duodeno/microbiología , Hepcidinas/metabolismo , Ferritinas/metabolismo , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Pulmón/microbiología , Pulmón/metabolismo , Hierro/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Ratones Endogámicos C57BL , Hemoglobinas/metabolismo , Masculino
11.
mSystems ; 9(4): e0140123, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38441031

RESUMEN

The microbial utilization of dietary carbohydrates is closely linked to the pivotal role of the gut microbiome in human health. Inherent to the modulation of complex microbial communities, a prebiotic implies the selective utilization of a specific substrate, relying on the metabolic capacities of targeted microbes. In this study, we investigated the metabolic capacities of 17 commensal bacteria of the human gut microbiome toward dietary carbohydrates with prebiotic potential. First, in vitro experiments allowed the classification of bacterial growth and fermentation profiles in response to various carbon sources, including agave inulin, corn fiber, polydextrose, and citrus pectin. The influence of phylogenetic affiliation appeared to statistically outweigh carbon sources in determining the degree of carbohydrate utilization. Second, we narrowed our focus on six commensal bacteria representative of the Bacteroidetes and Firmicutes phyla to perform an untargeted high-resolution liquid chromatography-mass spectrometry metabolomic analysis: Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides intestinalis, Subdoligranulum variabile, Roseburia intestinalis, and Eubacterium rectale exhibited distinct metabolomic profiles in response to different carbon sources. The relative abundance of bacterial metabolites was significantly influenced by dietary carbohydrates, with these effects being strain-specific and/or carbohydrate-specific. Particularly, the findings indicated an elevation in short-chain fatty acids and other metabolites, including succinate, gamma-aminobutyric acid, and nicotinic acid. These metabolites were associated with putative health benefits. Finally, an RNA-Seq transcriptomic approach provided deeper insights into the underlying mechanisms of carbohydrate metabolization. Restricting our focus on four commensal bacteria, including B. xylanisolvens, B. thetaiotaomicron, S. variabile, and R. intestinalis, carbon sources did significantly modulate the level of bacterial genes related to the enzymatic machinery involved in the metabolization of dietary carbohydrates. This study provides a holistic view of the molecular strategies induced during the dynamic interplay between dietary carbohydrates with prebiotic potential and gut commensal bacteria. IMPORTANCE: This study explores at a molecular level the interactions between commensal health-relevant bacteria and dietary carbohydrates holding prebiotic potential. We showed that prebiotic breakdown involves the specific activation of gene expression related to carbohydrate metabolism. We also identified metabolites produced by each bacteria that are potentially related to our digestive health. The characterization of the functional activities of health-relevant bacteria toward prebiotic substances can yield a better application of prebiotics in clinical interventions and personalized nutrition. Overall, this study highlights the importance of identifying the impact of prebiotics at a low resolution of the gut microbiota to characterize the activities of targeted bacteria that can play a crucial role in our health.


Asunto(s)
Carbohidratos de la Dieta , Prebióticos , Humanos , Carbohidratos de la Dieta/metabolismo , Filogenia , Bacterias/genética , Carbono/metabolismo
12.
J Biol Chem ; 286(12): 10288-96, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21239485

RESUMEN

The thermophilic lactic acid bacterium Streptococcus thermophilus is widely and traditionally used in the dairy industry. Despite the vast level of consumption of S. thermophilus through yogurt or probiotic functional food, very few data are available about its physiology in the gastrointestinal tract (GIT). The objective of the present work was to explore both the metabolic activity and host response of S. thermophilus in vivo. Our study profiles the protein expression of S. thermophilus after its adaptation to the GIT of gnotobiotic rats and describes the impact of S. thermophilus colonization on the colonic epithelium. S. thermophilus colonized progressively the GIT of germ-free rats to reach a stable population in 30 days (10(8) cfu/g of feces). This progressive colonization suggested that S. thermophilus undergoes an adaptation process within GIT. Indeed, we showed that the main response of S. thermophilus in the rat's GIT was the massive induction of the glycolysis pathway, leading to formation of lactate in the cecum. At the level of the colonic epithelium, the abundance of monocarboxylic acid transporter mRNAs (SLC16A1 and SLC5A8) and a protein involved in the cell cycle arrest (p27(kip1)) increased in the presence of S. thermophilus compared with germ-free rats. Based on different mono-associated rats harboring two different strains of S. thermophilus (LMD-9 or LMG18311) or weak lactate-producing commensal bacteria (Bacteroides thetaiotaomicron and Ruminococcus gnavus), we propose that lactate could be a signal produced by S. thermophilus and modulating the colon epithelium.


Asunto(s)
Adaptación Biológica/fisiología , Proteínas Bacterianas/biosíntesis , Colon/microbiología , Regulación Bacteriana de la Expresión Génica/fisiología , Streptococcus thermophilus/metabolismo , Animales , Masculino , Ratas , Ratas Endogámicas F344 , Organismos Libres de Patógenos Específicos
13.
J Nutr ; 142(2): 221-6, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22223579

RESUMEN

Oleate (OLE) is the principle fatty acid (FA) in mammalian colostrum, but its role in the energy supply in enterocytes after birth remains unknown. We investigated the metabolic fate of OLE in pig enterocytes at birth (d0) and after 2 d of suckling (d2). Cellular TG and phospholipids (PL) and FA composition were analyzed. Metabolic end-products of [1-¹4C]OLE were measured in enterocyte incubations. We characterized intestinal carnitine palmitoyltransferase 1 (CPT1), the key enzyme of mitochondrial FA oxidation. The TG content was 6.6-fold higher in enterocytes from pigs on d 2 than in those obtained on d 0, whereas the PL content did not differ. The level of OLE in TG and PL increased from 15 and 11% of total FA, respectively, in enterocytes from newborn piglets to 30 and 17%, respectively, in those from d2 pigs. The capacity for OLE utilization was 2.8-fold greater in d2 than in d0 pig enterocytes. The oxidation and esterification rates were enhanced in enterocytes from piglets on d 2 compared to those obtained on d 0, by 4- and 2.6-fold, respectively. The predominant OLE fate was the esterification pathway, representing >85% of OLE metabolized in both groups. The limited OLE oxidation observed at d 2 may result from the presence of a highly malonyl-CoA-sensitive CPT1A, because the half maximal inhibitory concentration for malonyl-CoA was 162 ± 25 nmol/L. This study highlighted the high esterification capacity for OLE in the newborn pig intestine, which may preserve this major colostrum FA for delivery to other tissues.


Asunto(s)
Animales Recién Nacidos/metabolismo , Enterocitos/metabolismo , Ácido Oléico/metabolismo , Porcinos/metabolismo , Animales , Animales Lactantes , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Calostro , Enterocitos/efectos de los fármacos , Esterificación , Regulación de la Expresión Génica/fisiología , Glucosa/farmacología , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Fosfolípidos/química , Fosfolípidos/metabolismo , Triglicéridos/química , Triglicéridos/metabolismo
14.
Nutrients ; 14(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35631237

RESUMEN

The colon harbours a dynamic and complex community of microorganisms, collectively known as the gut microbiota, which constitutes the densest microbial ecosystem in the human body. These commensal gut microbes play a key role in human health and diseases, revealing the strong potential of fine-tuning the gut microbiota to confer health benefits. In this context, dietary strategies targeting gut microbes to modulate the composition and metabolic function of microbial communities are of increasing interest. One such dietary strategy is the use of prebiotics, which are defined as substrates that are selectively utilised by host microorganisms to confer a health benefit. A better understanding of the metabolic pathways involved in the breakdown of prebiotics is essential to improve these nutritional strategies. In this review, we will present the concept of prebiotics, and focus on the main sources and nature of these components, which are mainly non-digestible polysaccharides. We will review the breakdown mechanisms of complex carbohydrates by the intestinal microbiota and present short-chain fatty acids (SCFAs) as key molecules mediating the dialogue between the intestinal microbiota and the host. Finally, we will review human studies exploring the potential of prebiotics in metabolic diseases, revealing the personalised responses to prebiotic ingestion. In conclusion, we hope that this review will be of interest to identify mechanistic factors for the optimization of prebiotic-based strategies.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Prebióticos
15.
Nat Commun ; 13(1): 6834, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400769

RESUMEN

Defects in RNA splicing have been linked to human disorders, but remain poorly explored in inflammatory bowel disease (IBD). Here, we report that expression of the chromatin and alternative splicing regulator HP1γ is reduced in ulcerative colitis (UC). Accordingly, HP1γ gene inactivation in the mouse gut epithelium triggers IBD-like traits, including inflammation and dysbiosis. In parallel, we find that its loss of function broadly increases splicing noise, favoring the usage of cryptic splice sites at numerous genes with functions in gut biology. This results in the production of progerin, a toxic splice variant of prelamin A mRNA, responsible for the Hutchinson-Gilford Progeria Syndrome of premature aging. Splicing noise is also extensively detected in UC patients in association with inflammation, with progerin transcripts accumulating in the colon mucosa. We propose that monitoring HP1γ activity and RNA splicing precision can help in the management of IBD and, more generally, of accelerated aging.


Asunto(s)
Colitis Ulcerosa , Progeria , Humanos , Ratones , Animales , Homólogo de la Proteína Chromobox 5 , Colitis Ulcerosa/genética , Empalme del ARN/genética , Progeria/genética , Progeria/metabolismo , Inflamación
16.
Front Immunol ; 12: 712614, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335628

RESUMEN

The gut microbiota is influenced by environmental factors such as food. Maternal diet during pregnancy modifies the gut microbiota composition and function, leading to the production of specific compounds that are transferred to the fetus and enhance the ontogeny and maturation of the immune system. Prebiotics are fermented by gut bacteria, leading to the release of short-chain fatty acids that can specifically interact with the immune system, inducing a switch toward tolerogenic populations and therefore conferring health benefits. In this study, pregnant BALB/cJRj mice were fed either a control diet or a diet enriched in prebiotics (Galacto-oligosaccharides/Inulin). We hypothesized that galacto-oligosaccharides/inulin supplementation during gestation could modify the maternal microbiota, favoring healthy immune imprinting in the fetus. Galacto-oligosaccharides/inulin supplementation during gestation increases the abundance of Bacteroidetes and decreases that of Firmicutes in the gut microbiota, leading to increased production of fecal acetate, which was found for the first time in amniotic fluid. Prebiotic supplementation increased the abundance of regulatory B and T cells in gestational tissues and in the fetus. Interestingly, these regulatory cells remained later in life. In conclusion, prebiotic supplementation during pregnancy leads to the transmission of specific microbial and immune factors from mother to child, allowing the establishment of tolerogenic immune imprinting in the fetus that may be beneficial for infant health outcomes.


Asunto(s)
Líquido Amniótico/metabolismo , Suplementos Dietéticos , Microbioma Gastrointestinal , Tolerancia Inmunológica , Prebióticos , Preñez , Acetatos/metabolismo , Animales , Subgrupos de Linfocitos B/inmunología , Butiratos/metabolismo , Células Dendríticas/inmunología , Heces/química , Heces/microbiología , Femenino , Feto/inmunología , Humanos , Inulina/administración & dosificación , Inulina/farmacología , Intercambio Materno-Fetal , Ratones , Ratones Endogámicos BALB C , Oligosacáridos/administración & dosificación , Oligosacáridos/farmacología , Placenta/citología , Placenta/inmunología , Embarazo , Resultado del Embarazo , Preñez/inmunología , Preñez/metabolismo , Efectos Tardíos de la Exposición Prenatal , Propionatos/metabolismo , Ribotipificación , Subgrupos de Linfocitos T/inmunología , Útero/citología , Útero/inmunología
17.
Front Immunol ; 12: 745535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069524

RESUMEN

Food allergy is associated with alterations in the gut microbiota, epithelial barrier, and immune tolerance. These dysfunctions are observed within the first months of life, indicating that early intervention is crucial for disease prevention. Preventive nutritional strategies with prebiotics are an attractive option, as prebiotics such as galacto-oligosaccharides and inulin can promote tolerance, epithelial barrier reinforcement, and gut microbiota modulation. Nonetheless, the ideal period for intervention remains unknown. Here, we investigated whether galacto-oligosaccharide/inulin supplementation during gestation could protect offspring from wheat allergy development in BALB/cJRj mice. We demonstrated that gestational prebiotic supplementation promoted the presence of beneficial strains in the fecal microbiota of dams during gestation and partially during mid-lactation. This specific microbiota was transferred to their offspring and maintained to adulthood. The presence of B and T regulatory immune cell subsets was also increased in the lymph nodes of offspring born from supplemented mothers, suggestive of a more tolerogenic immune environment. Indeed, antenatal prebiotic supplementation reduced the development of wheat allergy symptoms in offspring. Our study thus demonstrates that prebiotic supplementation during pregnancy induces, in the offspring, a tolerogenic environment and a microbial imprint that mitigates food allergy development.


Asunto(s)
Suplementos Dietéticos , Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Inulina/farmacología , Prebióticos , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/microbiología , Efectos Tardíos de la Exposición Prenatal/prevención & control
18.
Microbiome ; 9(1): 157, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34238386

RESUMEN

BACKGROUND: Autism spectrum disorders (ASD) are associated with dysregulation of the microbiota-gut-brain axis, changes in microbiota composition as well as in the fecal, serum, and urine levels of microbial metabolites. Yet a causal relationship between dysregulation of the microbiota-gut-brain axis and ASD remains to be demonstrated. Here, we hypothesized that the microbial metabolite p-Cresol, which is more abundant in ASD patients compared to neurotypical individuals, could induce ASD-like behavior in mice. RESULTS: Mice exposed to p-Cresol for 4 weeks in drinking water presented social behavior deficits, stereotypies, and perseverative behaviors, but no changes in anxiety, locomotion, or cognition. Abnormal social behavior induced by p-Cresol was associated with decreased activity of central dopamine neurons involved in the social reward circuit. Further, p-Cresol induced changes in microbiota composition and social behavior deficits could be transferred from p-Cresol-treated mice to control mice by fecal microbiota transplantation (FMT). We also showed that mice transplanted with the microbiota of p-Cresol-treated mice exhibited increased fecal p-Cresol excretion, compared to mice transplanted with the microbiota of control mice. In addition, we identified possible p-Cresol bacterial producers. Lastly, the microbiota of control mice rescued social interactions, dopamine neurons excitability, and fecal p-Cresol levels when transplanted to p-Cresol-treated mice. CONCLUSIONS: The microbial metabolite p-Cresol induces selectively ASD core behavioral symptoms in mice. Social behavior deficits induced by p-Cresol are dependant on changes in microbiota composition. Our study paves the way for therapeutic interventions targeting the microbiota and p-Cresol production to treat patients with ASD. Video abstract.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Microbioma Gastrointestinal , Animales , Trastorno Autístico/etiología , Cresoles , Trasplante de Microbiota Fecal , Humanos , Ratones
19.
Am J Physiol Gastrointest Liver Physiol ; 299(2): G348-57, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20466941

RESUMEN

Previous studies have suggested that intestinal microbiota modulates colonic epithelium renewal. The objective of our work was to study the effects of microbiota on colonic epithelium structure and cell cycle-related proteins by using gnotobiotic rats. Colonic crypts and amount of cell cycle-related proteins were compared between germ-free (GF), conventional (CV), and conventionalized rats by histochemistry and Western blot. Ki67 and proliferating cell nuclear antigen (PCNA) were used as surrogates for proliferative cells; p21(cip1) and p27(kip1) were markers of cell cycle arrest; anti- and proapoptotic proteins, Bcl2 and Bax, respectively, were also studied. We observed 40% increase of the crypt proliferative area 2 days after inoculation of GF rats with a complex microbiota. This recruitment of proliferative cells may account for the 30% increase of crypt depth observed between CV and GF rats. The hyperproliferative boost induced by microbiota was compensated by a fourfold increase of p21(cip1) and p27(kip1) involved in cell cycle arrest and a 30% drop of antiapoptotic Bcl2 protein while Bax was unchanged. Inductions of p21(cip1), p27(kip1), and PCNA protein were not paralleled by an increase of the corresponding mRNA. We also showed that p21(cip1) induction by microbiota was partially restored by Bacteroides thetaiotaomicron, Ruminococcus gnavus, and Clostridium paraputrificum. Colonization of the colon by a complex microbiota increases the crypt depth of colon epithelium. This event takes place in conjunction with a multistep process: a hyperproliferative boost accompanied by compensatory events as induction of p21(cip1) and p27(kip1) and decrease of Bcl2.


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Colon/crecimiento & desarrollo , Colon/metabolismo , Vida Libre de Gérmenes , Mucosa Intestinal/crecimiento & desarrollo , Mucosa Intestinal/metabolismo , Metagenoma , Adaptación Fisiológica , Animales , Western Blotting , Ciclo Celular , Proliferación Celular , Colon/microbiología , Colon/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Histocitoquímica , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Masculino , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Ratas Endogámicas F344
20.
Stem Cell Res ; 48: 101980, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32920507

RESUMEN

Intestinal organoids are self-organized 3-dimensional (3D) structures formed by a single layer of polarized epithelial cells. This innovative in vitro model is highly relevant to study physiology of the intestinal epithelium and its role in nutrition and barrier function. However, this model has never been developed in rabbits, while it would have potential applications for biomedical and veterinary research. Here, we cultured rabbit caecum organoids with either pharmacological inhibitors (2Ki medium) or L-WRN cells conditioned medium (L-WRN CM) to reconstitute the intestinal stem cell niche in vitro. Large spherical organoids were obtained with the 2Ki medium and this morphology was associated with a high level of proliferation and stem cells markers gene expression. In contrast, organoids cultured with L-WRN CM had a smaller diameter; a greater cell height and part of them were not spherical. When the L-WRN CM was used at low concentration (5%) for two days, the gene expression of stem cells and proliferation markers were very low, while absorptive and secretory cells markers and antimicrobial peptides were elevated. Epithelial cells within organoids were polarized in 3D cultures with 2Ki medium or L-WRN CM (apical side towards the lumen). We cultured dissociated organoid cells in 2D monolayers, which allowed accessibility to the apical compartment. Under these conditions, actin stress fibers were observed with the 2Ki medium, while perijonctionnal localization of actin was observed with the L-WRN CM suggesting, in 2D cultures as well, a higher differentiation level in the presence of L-WRN CM. In conclusion, rabbit caecum organoids cultured with the 2Ki medium were more proliferative and less differentiated than organoids cultured with L-WRN CM. We propose that organoids cultured with the 2Ki medium could be used to rapidly generate in vitro a large number of rabbit intestinal epithelial stem cells while organoids cultured with the L-WRN CM used at low concentration represent a suitable model to study differentiated rabbit epithelium.


Asunto(s)
Organoides , Nicho de Células Madre , Animales , Ciego , Medios de Cultivo Condicionados/farmacología , Mucosa Intestinal , Intestinos , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA