Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Transplant ; 22(4): 1037-1053, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35049121

RESUMEN

A radical solution is needed for the organ supply crisis, and the domestic pig is a promising organ source. In preparation for a clinical trial of xenotransplantation, we developed an in vivo pre-clinical human model to test safety and feasibility tenets established in animal models. After performance of a novel, prospective compatible crossmatch, we performed bilateral native nephrectomies in a human brain-dead decedent and subsequently transplanted two kidneys from a pig genetically engineered for human xenotransplantation. The decedent was hemodynamically stable through reperfusion, and vascular integrity was maintained despite the exposure of the xenografts to human blood pressure. No hyperacute rejection was observed, and the kidneys remained viable until termination 74 h later. No chimerism or transmission of porcine retroviruses was detected. Longitudinal biopsies revealed thrombotic microangiopathy that did not progress in severity, without evidence of cellular rejection or deposition of antibody or complement proteins. Although the xenografts produced variable amounts of urine, creatinine clearance did not recover. Whether renal recovery was impacted by the milieu of brain death and/or microvascular injury remains unknown. In summary, our study suggests that major barriers to human xenotransplantation have been surmounted and identifies where new knowledge is needed to optimize xenotransplantation outcomes in humans.


Asunto(s)
Rechazo de Injerto , Riñón , Animales , Animales Modificados Genéticamente , Rechazo de Injerto/patología , Xenoinjertos , Humanos , Estudios Prospectivos , Porcinos , Trasplante Heterólogo
2.
Blood ; 128(24): 2785-2796, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27758872

RESUMEN

Alveolar macrophages are lung-resident sentinel cells that develop perinatally and protect against pulmonary infection. Molecular mechanisms controlling alveolar macrophage generation have not been fully defined. Here, we show that the actin-bundling protein L-plastin (LPL) is required for the perinatal development of alveolar macrophages. Mice expressing a conditional allele of LPL (CD11c.Crepos-LPLfl/fl) exhibited significant reductions in alveolar macrophages and failed to effectively clear pulmonary pneumococcal infection, showing that immunodeficiency results from reduced alveolar macrophage numbers. We next identified the phase of alveolar macrophage development requiring LPL. In mice, fetal monocytes arrive in the lungs during a late fetal stage, maturing to alveolar macrophages through a prealveolar macrophage intermediate. LPL was required for the transition from prealveolar macrophages to mature alveolar macrophages. The transition from prealveolar macrophage to alveolar macrophage requires the upregulation of the transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ), which is induced by exposure to granulocyte-macrophage colony-stimulating factor (GM-CSF). Despite abundant lung GM-CSF and intact GM-CSF receptor signaling, PPAR-γ was not sufficiently upregulated in developing alveolar macrophages in LPL-/- pups, suggesting that precursor cells were not correctly localized to the alveoli, where GM-CSF is produced. We found that LPL supports 2 actin-based processes essential for correct localization of alveolar macrophage precursors: (1) transmigration into the alveoli, and (2) engraftment in the alveoli. We thus identify a molecular pathway governing neonatal alveolar macrophage development and show that genetic disruption of alveolar macrophage development results in immunodeficiency.


Asunto(s)
Macrófagos Alveolares/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Alveolos Pulmonares/citología , Alveolos Pulmonares/metabolismo , Animales , Animales Recién Nacidos , Antígenos CD11/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Ratones Endogámicos C57BL , Modelos Biológicos , Monocitos/metabolismo , PPAR gamma/metabolismo , Infecciones Neumocócicas/patología , Podosomas/metabolismo , Transporte de Proteínas , Regulación hacia Arriba/efectos de los fármacos
3.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559147

RESUMEN

Uterine natural killer cells (uNKs) are a tissue resident lymphocyte population that are critical for pregnancy success. Although mouse models have demonstrated that NK deficiency results in abnormal placentation and poor pregnancy outcomes, the generalizability of this knowledge to humans remains unclear. Here we identify uterus transplant (UTx) recipients as a human population with reduced endometrial NK cells and altered pregnancy phenotypes. We further show that the NK reduction in UTx is due to impaired transcriptional programming of NK tissue residency due to blockade of the transcription factor nuclear factor of activated T cells (NFAT). NFAT-dependent genes played a role in multiple molecular circuits governing tissue residency in uNKs, including early residency programs involving AP-1 transcription factors as well as TGFß-mediated upregulation of surface integrins. Collectively, our data identify a previously undescribed role for NFAT in uterine NK tissue residency and provide novel mechanistic insights into the biologic basis of pregnancy complications due to alteration of tissue resident NK subsets in humans. One Sentence Summary: Role of NFAT in uterine NK cell tissue residency.

4.
Nat Commun ; 15(1): 3140, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605083

RESUMEN

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. Here, we transplant a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and study the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells are uncommon in the porcine kidney cortex early after xenotransplantation and consist of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages express genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft is detectable. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression may be able to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.


Asunto(s)
Edición Génica , Riñón , Animales , Porcinos , Humanos , Animales Modificados Genéticamente , Xenoinjertos , Trasplante Heterólogo , Rechazo de Injerto/genética
5.
Res Sq ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711785

RESUMEN

Pig-to-human xenotransplantation is rapidly approaching the clinical arena; however, it is unclear which immunomodulatory regimens will effectively control human immune responses to pig xenografts. We transplanted a gene-edited pig kidney into a brain-dead human recipient on pharmacologic immunosuppression and studied the human immune response to the xenograft using spatial transcriptomics and single-cell RNA sequencing. Human immune cells were uncommon in the porcine kidney cortex early after xenotransplantation and consisted of primarily myeloid cells. Both the porcine resident macrophages and human infiltrating macrophages expressed genes consistent with an alternatively activated, anti-inflammatory phenotype. No significant infiltration of human B or T cells into the porcine kidney xenograft was detected. Altogether, these findings provide proof of concept that conventional pharmacologic immunosuppression is sufficient to restrict infiltration of human immune cells into the xenograft early after compatible pig-to-human kidney xenotransplantation.

6.
Semin Nephrol ; 42(3): 151276, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-36435683

RESUMEN

Kidney resident macrophages (KRMs) are involved in homeostasis, phagocytosis, defense against infectious agents, response to insults, inflammation, and tissue repair. They also play critical roles in the pathogenesis and recovery from many kidney diseases such as acute kidney injury. KRMs historically have been studied as one homogenous population, but the wide-ranging roles and phenotypes observed suggest that there is greater heterogeneity than previously understood. Advancements in RNA sequencing technologies (single-cell RNA sequencing and spatial transcriptomics) have identified specific subsets of KRMs that are molecularly, functionally, and spatially distinct with dynamic changes after kidney injury. Multiple studies have identified unique markers that represent these subpopulations, permitting further characterization of the function and roles they play in the kidney. Understanding the diversity of KRM subpopulations will be key in the development of novel therapies used in treating kidney diseases and promoting kidney health.


Asunto(s)
Lesión Renal Aguda , Macrófagos , Humanos , Riñón/patología , Lesión Renal Aguda/patología , Inflamación , Fenotipo
7.
Kidney360 ; 3(1): 28-36, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35368565

RESUMEN

Background: AKI is a common sequela of infection with SARS-CoV-2 and contributes to the severity and mortality from COVID-19. Here, we tested the hypothesis that kidney alterations induced by COVID-19-associated AKI could be detected in cells collected from urine. Methods: We performed single-cell RNA sequencing (scRNAseq) on cells recovered from the urine of eight hospitalized patients with COVID-19 with (n=5) or without AKI (n=3) as well as four patients with non-COVID-19 AKI (n=4) to assess differences in cellular composition and gene expression during AKI. Results: Analysis of 30,076 cells revealed a diverse array of cell types, most of which were kidney, urothelial, and immune cells. Pathway analysis of tubular cells from patients with AKI showed enrichment of transcripts associated with damage-related pathways compared with those without AKI. ACE2 and TMPRSS2 expression was highest in urothelial cells among cell types recovered. Notably, in one patient, we detected SARS-CoV-2 viral RNA in urothelial cells. These same cells were enriched for transcripts associated with antiviral and anti-inflammatory pathways. Conclusions: We successfully performed scRNAseq on urinary sediment from hospitalized patients with COVID-19 to noninvasively study cellular alterations associated with AKI and established a dataset that includes both injured and uninjured kidney cells. Additionally, we provide preliminary evidence of direct infection of urinary bladder cells by SARS-CoV-2. The urinary sediment contains a wealth of information and is a useful resource for studying the pathophysiology and cellular alterations that occur in kidney diseases.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Lesión Renal Aguda/etiología , COVID-19/complicaciones , Humanos , Riñón , SARS-CoV-2 , Análisis de Secuencia de ARN
8.
JCI Insight ; 7(20)2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36066976

RESUMEN

The kidney contains a population of resident macrophages from birth that expands as it grows and forms a contiguous network throughout the tissue. Kidney-resident macrophages (KRMs) are important in homeostasis and the response to acute kidney injury. While the kidney contains many microenvironments, it is unknown whether KRMs are a heterogeneous population differentiated by function and location. We combined single-cell RNA-Seq (scRNA-Seq), spatial transcriptomics, flow cytometry, and immunofluorescence imaging to localize, characterize, and validate KRM populations during quiescence and following 19 minutes of bilateral ischemic kidney injury. scRNA-Seq and spatial transcriptomics revealed 7 distinct KRM subpopulations, which are organized into zones corresponding to regions of the nephron. Each subpopulation was identifiable by a unique transcriptomic signature, suggesting distinct functions. Specific protein markers were identified for 2 clusters, allowing analysis by flow cytometry or immunofluorescence imaging. Following injury, the original localization of each subpopulation was lost, either from changing locations or transcriptomic signatures. The original spatial distribution of KRMs was not fully restored for at least 28 days after injury. The change in KRM localization confirmed a long-hypothesized dysregulation of the local immune system following acute injury and may explain the increased risk for chronic kidney disease.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Macrófagos/metabolismo , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Citometría de Flujo , Insuficiencia Renal Crónica/metabolismo
9.
Kidney Int Rep ; 6(12): 3002-3013, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34541422

RESUMEN

INTRODUCTION: Acute kidney injury (AKI) is common in COVID-19 and associated with increased morbidity and mortality. We investigated alterations in the urine metabolome to test the hypothesis that impaired nicotinamide adenine dinucleotide (NAD+) biosynthesis and other deficiencies in energy metabolism in the kidney, previously characterized in ischemic, toxic, and inflammatory etiologies of AKI, will be present in COVID-19-associated AKI. METHODS: This is a case-control study among the following 2 independent populations of adults hospitalized with COVID-19: a critically ill population in Boston, Massachusetts, and a general population in Birmingham, Alabama. The cases had AKI stages 2 or 3 by Kidney Disease Improving Global Outcomes (KDIGO) criteria; the controls had no AKI. Metabolites were measured by liquid chromatography-mass spectrometry. RESULTS: A total of 14 cases and 14 controls were included from Boston and 8 cases and 10 controls from Birmingham. Increased urinary quinolinate-to-tryptophan ratio (Q/T), found with impaired NAD+ biosynthesis, was present in the cases at each location and pooled across locations (median [interquartile range]: 1.34 [0.59-2.96] in cases, 0.31 [0.13-1.63] in controls, P = 0.0013). Altered energy metabolism and purine metabolism contributed to a distinct urinary metabolomic signature that differentiated patients with and without AKI (supervised random forest class error: 2 of 28 in Boston, 0 of 18 in Birmingham). CONCLUSION: Urinary metabolites spanning multiple biochemical pathways differentiate AKI versus non-AKI in patients hospitalized with COVID-19 and suggest a conserved impairment in NAD+ biosynthesis, which may present a novel therapeutic target to mitigate COVID-19-associated AKI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA