Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(17): 9621-9629, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284410

RESUMEN

The plasma membrane (PM) is composed of heterogeneous subdomains, characterized by differences in protein and lipid composition. PM receptors can be dynamically sorted into membrane domains to underpin signaling in response to extracellular stimuli. In plants, the plasmodesmal PM is a discrete microdomain that hosts specific receptors and responses. We exploited the independence of this PM domain to investigate how membrane domains can independently integrate a signal that triggers responses across the cell. Focusing on chitin signaling, we found that responses in the plasmodesmal PM require the LysM receptor kinases LYK4 and LYK5 in addition to LYM2. Chitin induces dynamic changes in the localization, association, or mobility of these receptors, but only LYM2 and LYK4 are detected in the plasmodesmal PM. We further uncovered that chitin-induced production of reactive oxygen species and callose depends on specific signaling events that lead to plasmodesmata closure. Our results demonstrate that distinct membrane domains can integrate a common signal with specific machinery that initiates discrete signaling cascades to produce a localized response.


Asunto(s)
Arabidopsis/fisiología , Quitina/metabolismo , Nicotiana/fisiología , Plasmodesmos/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenómenos Biomecánicos , Membrana Celular/fisiología , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mecanotransducción Celular/fisiología , Hojas de la Planta/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno
2.
New Phytol ; 217(1): 62-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29083038

RESUMEN

Contents Summary 62 I. Introduction 62 II. Plasmodesmal regulation is an innate defence response 63 III. Reactive oxygen species regulate plasmodesmal function 63 IV. Plasmodesmal regulation by and of defence-associated small molecules 64 V. Plasmodesmata facilitate systemic defence signalling 64 VI. Virulent pathogens exploit plasmodesmata 66 VII. Outlook 66 Acknowledgements 66 References 66 SUMMARY: Plasmodesmata (PD) are plasma membrane-lined pores that connect neighbouring plant cells, bridging the cell wall and establishing cytoplasmic and membrane continuity between cells. PD are dynamic structures regulated by callose deposition in a variety of stress and developmental contexts. This process crudely controls the aperture of the pore and thus the flux of molecules between cells. During pathogen infection, plant cells initiate a range of immune responses and it was recently identified that, following perception of fungal and bacterial pathogens, plant cells initially close their PD. Systemic defence responses depend on the spread of signals between cells, raising questions about whether PD are in different functional states during different immune responses. It is well established that viral pathogens exploit PD to spread between cells, but it has more recently been identified that protein effectors secreted by fungal pathogens can spread between host cells via PD. It is possible that many classes of pathogens specifically target PD to aid infection, which would infer antagonistic regulation of PD by host and pathogen. How PD regulation benefits both host immune responses and pathogen infection is an important question and demands that we examine the multicellular nature of plant-pathogen interactions.


Asunto(s)
Interacciones Huésped-Patógeno , Células Vegetales/metabolismo , Inmunidad de la Planta , Plantas/metabolismo , Plasmodesmos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Membrana Celular/metabolismo , Pared Celular , Citoplasma/metabolismo , Glucanos/metabolismo , Células Vegetales/inmunología , Plantas/inmunología , Plasmodesmos/inmunología , Transducción de Señal
3.
New Phytol ; 215(1): 77-84, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28513846

RESUMEN

Plants sense microbial signatures via activation of pattern recognition receptors (PPRs), which trigger a range of cellular defences. One response is the closure of plasmodesmata, which reduces symplastic connectivity and the capacity for direct molecular exchange between host cells. Plasmodesmal flux is regulated by a variety of environmental cues but the downstream signalling pathways are poorly defined, especially the way in which calcium regulates plasmodesmal closure. Here, we identify that closure of plasmodesmata in response to bacterial flagellin, but not fungal chitin, is mediated by a plasmodesmal-localized Ca2+ -binding protein Calmodulin-like 41 (CML41). CML41 is transcriptionally upregulated by flg22 and facilitates rapid callose deposition at plasmodesmata following flg22 treatment. CML41 acts independently of other defence responses triggered by flg22 perception and reduces bacterial infection. We propose that CML41 enables Ca2+ -signalling specificity during bacterial pathogen attack and is required for a complete defence response against Pseudomonas syringae.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Proteínas de Unión al Calcio/fisiología , Calmodulina/fisiología , Plasmodesmos/fisiología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/inmunología , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Calmodulina/metabolismo , Clonación Molecular , Flagelina/inmunología , Plasmodesmos/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/fisiología
4.
Biochim Biophys Acta ; 1833(7): 1766-71, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23380707

RESUMEN

Calcium is a universal messenger involved in the modulation of diverse developmental and adaptive processes in response to various physiological stimuli. Ca(2+) signals are represented by stimulus-specific Ca(2+) signatures that are sensed and translated into proper cellular responses by diverse Ca(2+) binding proteins and their downstream targets. Calmodulin (CaM) and calmodulin-like (CML) proteins are primary Ca(2+) sensors that control diverse cellular functions by regulating the activity of various target proteins. Recent advances in our understanding of Ca(2+)/CaM-mediated signalling in plants have emerged from investigations into plant defence responses against various pathogens. Here, we focus on significant progress made in the identification of CaM/CML-regulated components involved in the generation of Ca(2+) signals and Ca(2+)-dependent regulation of gene expression during plant immune responses. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/fisiología , Proteínas de Plantas/metabolismo , Calmodulina/inmunología , Proteínas de Plantas/inmunología , Transducción de Señal
5.
Plant J ; 71(6): 976-89, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22563930

RESUMEN

Many stimuli such as hormones and elicitors induce changes in intracellular calcium levels to integrate information and activate appropriate responses. The Ca(2+) signals are perceived by various Ca(2+) sensors, and calmodulin (CaM) is one of the best characterized in eukaryotes. Calmodulin-like (CML) proteins extend the Ca(2+) toolkit in plants; they share sequence similarity with the ubiquitous and highly conserved CaM but their roles at physiological and molecular levels are largely unknown. Knowledge of the contribution of Ca(2+) decoding proteins to plant immunity is emerging, and we report here data on Arabidopsis thaliana CML9, whose expression is rapidly induced by phytopathogenic bacteria, flagellin and salicylic acid. Using a reverse genetic approach, we present evidence that CML9 is involved in plant defence by modulating responses to bacterial strains of Pseudomonas syringae. Compared to wild-type plants, the later responses normally observed upon flagellin application are altered in knockout mutants and over-expressing transgenic lines. Collectively, using PAMP treatment and P. syringae strains, we have established that CML9 participates in plant innate immunity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Flagelina/metabolismo , Enfermedades de las Plantas/inmunología , Pseudomonas syringae/patogenicidad , Transducción de Señal/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Flagelina/farmacología , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genotipo , Glucanos/metabolismo , Interacciones Huésped-Patógeno , Modelos Biológicos , Mutación , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Hojas de la Planta , Plantas Modificadas Genéticamente , Pseudomonas syringae/crecimiento & desarrollo , Ácido Salicílico/análisis , Ácido Salicílico/farmacología , Plantones
6.
Plants (Basel) ; 8(11)2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31718005

RESUMEN

Senescence is a genetically controlled mechanism that modifies leaf chemistry. This involves significant changes in the accumulation of carbon- and nitrogen-containing compounds, including asparagine through the activity of asparagine synthetases. These enzymes are required for nitrogen re-assimilation and remobilization in plants; however, their mechanisms are not fully understood. Here, we report how leaf curing-a senescence-induced process that allows tobacco leaves to dry out-modifies the asparagine metabolism. We show that leaf curing strongly alters the concentration of the four main amino acids, asparagine, glutamine, aspartate, and glutamate. We demonstrate that detached tobacco leaf or stalk curing has a different impact on the expression of asparagine synthetase genes and accumulation of asparagine. Additionally, we characterize the main asparagine synthetases involved in the production of asparagine during curing. The expression of ASN1 and ASN5 genes is upregulated during curing. The ASN1-RNAi and ASN5-RNAi tobacco plant lines display significant alterations in the accumulation of asparagine, glutamine, and aspartate relative to wild-type plants. These results support the idea that ASN1 and ASN5 are key regulators of asparagine metabolism during leaf curing.

7.
Plant Signal Behav ; 7(9): 1121-4, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22899061

RESUMEN

Plants have evolved complex signaling networks to respond to their fluctuating environment and adapt their growth and development. Calcium-dependent signaling pathways play key role in the onset of these adaptive responses. In plant cells, the intracellular calcium transients are triggered by numerous stimuli and it is supposed that the large repertory of calcium sensors present in higher plants could contribute to integrate these signals in physiological responses. Here, we present data on CML9, a calmodulin-like protein that appears to be involved in plant responses to both biotic and abiotic stress. Using a reverse genetic approach based on gain and loss of function mutants, we present here data indicating that this CML might also be involved in root growth control in response to the flagellin, a pathogen-associated molecular pattern (PAMP) also involved in plant immunity.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Calcio/metabolismo , Calmodulina/metabolismo , Inmunidad de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Calmodulina/genética , Flagelina , Genes de Plantas , Mutación , Enfermedades de las Plantas , Raíces de Plantas/metabolismo , Transducción de Señal
8.
Plant Signal Behav ; 6(4): 538-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21673513

RESUMEN

The RD20 gene encodes a member of the caleosin family, which is primarily known to function in the mobilization of seed storage lipids during germination. In contrast to other caleosins, RD20 expression is early-induced by water deficit conditions and we recently provided genetic evidence for its positive role in drought tolerance in Arabidopsis. RD20 is also responsive to pathogen infection and is constitutively expressed in diverse tissues and organs during development suggesting additional roles for this caleosin. This addendum describes further exploration of phenotypic alterations in T-DNA insertional rd20 mutant and knock-out complemented transgenic plants in the context of early development and susceptibility to a phytopathogenic bacteria. We show that the RD20 gene is involved in ABA-mediated inhibition of germination and does not play a significant role in plant defense against Pseudomonas syringae.


Asunto(s)
Ácido Abscísico/farmacología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Germinación/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al Calcio/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Germinación/genética , Pseudomonas syringae/patogenicidad , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Plantones/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA