Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 600, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689046

RESUMEN

Single-cell sequencing was developed as a high-throughput tool to elucidate unusual and transient cell states that are barely visible in the bulk. This technology reveals the evolutionary status of cells and differences between populations, helps to identify unique cell subtypes and states, reveals regulatory relationships between genes, targets and molecular mechanisms in disease processes, tumor heterogeneity, the state of the immune environment, etc. However, the high cost and technical limitations of single-cell sequencing initially prevented its widespread application, but with advances in research, numerous new single-cell sequencing techniques have been discovered, lowering the cost barrier. Many single-cell sequencing platforms and bioinformatics methods have recently become commercially available, allowing researchers to make fascinating observations. They are now increasingly being used in various industries. Several protocols have been discovered in this context and each technique has unique characteristics, capabilities and challenges. This review presents the latest advancements in single-cell transcriptomics technologies. This includes single-cell transcriptomics approaches, workflows and statistical approaches to data processing, as well as the potential advances, applications, opportunities and challenges of single-cell transcriptomics technology. You will also get an overview of the entry points for spatial transcriptomics and multi-omics.


Asunto(s)
Biología Computacional , Perfilación de la Expresión Génica , Análisis de la Célula Individual , Transcriptoma , Análisis de la Célula Individual/métodos , Humanos , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Transcriptoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales
2.
Mol Pharm ; 19(7): 2429-2440, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35639628

RESUMEN

In breast cancer therapy, Gemcitabine (Gem) is an antineoplastic antimetabolite with greater anticancer efficacy and tolerability. However, effectiveness of Gem is limited by its off-target effects. The synergistic potential of MUC1 (mucin 1) inhibitors and Gem-loaded polymeric nanoparticles (NPs) was discussed in this work in order to reduce dose-related toxicities and enhance the therapeutic efficacy. The double emulsion solvent evaporation method was used to prepare poly(ethylene glycol) methyl ether-block-poly-caprolactone (PEG-PCL)-loaded Gem and MUC 1 inhibitor NPs. The average size of Gem and MUC 1 inhibitor-loaded NPs was 128 nm, with a spherical shape. Twin-loaded NPs containing Gem and the MUC1 inhibitor decreased IC50 and behaved synergistically. Furthermore, in vitro mechanistic studies, that is, loss of MMP, clonogenic assay, Annexin V FITC assay, and Western blotting to confirm apoptosis with simultaneous induction of autophagy using acridine orange (AO) staining were performed in this study. Furthermore, the investigated NPs upon combination exhibited greater loss of MMP and decreased clonogenic potential with simultaneous induction of autophagy in MCF-7 cells. Annexin V FITC clearly showed the percentage of apoptosis while Western blotting protein expression analysis revealed an increase in caspase-3 activity with simultaneous decrease in Bcl-2 protein expression, a hallmark of apoptosis. The effectiveness of the Ehrlich ascites solid (EAT) mice treated with Gem-MUC1 inhibitor NPs was higher than that of the animals treated alone. Overall, the combined administration of Gem and MUC1 inhibitor-loaded NPs was found to be more efficacious than Gem and MUC1 inhibitor delivered separately.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Animales , Anexina A5/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Femenino , Fluoresceína-5-Isotiocianato , Humanos , Ratones , Mucina-1 , Poliésteres , Polietilenglicoles , Gemcitabina
3.
Phytother Res ; 33(9): 2163-2178, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31290201

RESUMEN

Ageratum conyzoides L. (Asteraceae) is an invasive aromatic herb with immense therapeutic importance. The herb is distributed in tropical and subtropical regions. A. conyzoides has imparted numerous ethnomedicinal uses because it has been used to cure various ailments that include leprosy, skin disorders, sleeping sickness, rheumatism, headaches, dyspnea, toothache, pneumonia and many more. A number of phytoconstituents have been scrutinized such as alkaloids, flavonoids, terpenes, chromenes, and sterols from almost every part of this plant. These phytoconstituents have shown diverse pharmacological properties including antimicrobial, anti-inflammatory, analgesic, antioxidant, anticancer, antiprotozoal, antidiabetic, spasmolytic, allelopathy, and many more. The plant A. conyzoides has provided a platform for doing pharmaceutical and toxicological research in order to isolate some promising active compounds and authenticate their safety in clinical uses. A. conyzoides provides principal information for advanced studies in the field of pharmaceutical industries and agriculture. Present review article describes the cytogenetics, ethnobotany, phytochemistry, pharmacology, and toxicological aspects of A. conyzoides.


Asunto(s)
Ageratum/química , Etnofarmacología/métodos , Fitoquímicos/uso terapéutico , Fitoterapia/métodos , Humanos , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-28607028

RESUMEN

Despite recent advances in diagnostic and therapeutic methods in antifungal research, aspergillosis still remains a leading cause of morbidity and mortality. One strategy to address this problem is to enhance the activity spectrum of known antifungals, and we now report the first successful application of Candida antarctica lipase (CAL) for the preparation of optically enriched fluconazole analogues. Anti-Aspergillus activity was observed for an optically enriched derivative, (-)-S-2-(2',4'-difluorophenyl)-1-hexyl-amino-3-(1‴,2‴,4‴)triazol-1‴-yl-propan-2-ol, which exhibits MIC values of 15.6 µg/ml and 7.8 µg/disc in broth microdilution and disc diffusion assays, respectively. This compound is tolerated by mammalian erythrocytes and cell lines (A549 and U87) at concentrations of up to 1,000 µg/ml. When incorporated into dextran nanoparticles, the novel, optically enriched fluconazole analogue exhibited improved antifungal activity against Aspergillus fumigatus (MIC, 1.63 µg/ml). These results not only demonstrate the ability of biocatalytic approaches to yield novel, optically enriched fluconazole derivatives but also suggest that enantiomerically pure fluconazole derivatives, and their nanotized counterparts, exhibiting anti-Aspergillus activity may have reduced toxicity.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus fumigatus/efectos de los fármacos , Fluconazol/análogos & derivados , Fluconazol/farmacología , Células A549 , Línea Celular , Pruebas Antimicrobianas de Difusión por Disco , Fluconazol/efectos adversos , Proteínas Fúngicas/metabolismo , Humanos , Lipasa/metabolismo , Nanopartículas/química
5.
Drug Metab Rev ; 47(3): 281-90, 2015 08.
Artículo en Inglés | MEDLINE | ID: mdl-25996670

RESUMEN

Global statistical data shed light on an alarming trend that every year thousands of people die due to adverse drug reactions as each individual responds in a different way to the same drug. Pharmacogenomics has come up as a promising field in drug development and clinical medication in the past few decades. It has emerged as a ray of hope in preventing patients from developing potentially fatal complications due to adverse drug reactions. Pharmacogenomics also minimizes the exposure to drugs that are less/non-effective and sometimes even found toxic for patients. It is well reported that drugs elicit different responses in different individuals due to variations in the nucleotide sequences of genes encoding for biologically important molecules (drug-metabolizing enzymes, drug targets and drug transporters). Single nucleotide polymorphisms (SNPs), the most common type of polymorphism found in the human genome is believed to be the main reason behind 90% of all types of genetic variations among the individuals. Therefore, pharmacogenomics may be helpful in answering the question as to how inherited differences in a single gene have a profound effect on the mobilization and biological action of a drug. In the present review, we have discussed clinically relevant examples of SNP in associated diseases that can be utilized as markers for "better management of complex diseases" and attempted to correlate the drug response with genetic variations. Attention is also given towards the therapeutic consequences of inherited differences at the chromosomal level and how associated drug disposition and/or drug targets differ in various diseases as well as among the individuals.


Asunto(s)
Farmacogenética , Variantes Farmacogenómicas , Polimorfismo de Nucleótido Simple , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Factores de Riesgo , Resultado del Tratamiento
6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1311-1326, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37695334

RESUMEN

Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Polímeros/química , Polímeros/uso terapéutico , Sistemas de Liberación de Medicamentos , Polietilenglicoles/química , Neoplasias/tratamiento farmacológico , Inmunoterapia , Nanopartículas/química , Microambiente Tumoral
7.
Recent Pat Anticancer Drug Discov ; 18(3): 325-342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35702804

RESUMEN

BACKGROUND: Chemotherapeutic drugs are principally intended to treat breast cancer. However, sooner or later, tumor drug resistance developed. These chemo drugs are effective but with numerous side effects. Breast cancer care may be extremely difficult since recurring cancer is frequently pre-treated with powerful agents. Cancer cells acquire high resistance to earlier therapies, necessitating alternative and more powerful drugs. Nanoparticles (NPs) as a medication delivery technology can overcome medication resistance in breast cancer and significantly reduce the effective dose. The off-targeted nature of chemo drugs can be resolved by encapsulating or attaching chemo drugs in nanocarriers, specifically targeting breast cancer cells. OBJECTIVES: This review highlights various chemo drugs for breast cancer and their encapsulation or bioconjugation with nanoparticles for its targeted delivery. CONCLUSION: Nanoparticles may subsist valuable abet in breast cancer management in this regard. Given that traditional chemotherapy approaches have been demonstrated to have several side effects and defects during treatment, the NPs-mediated drug delivery mechanism is a possible contender for replacement as a new technique.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Sistemas de Liberación de Medicamentos/métodos , Antineoplásicos/farmacología , Portadores de Fármacos , Resistencia a Antineoplásicos
8.
Crit Rev Oncol Hematol ; 183: 103915, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36702424

RESUMEN

In breast cancer, mAbs can play multifunctional roles like targeting cancer cells, sometimes directly attacking them, helping in locating and delivering therapeutic drugs to targets, inhibiting cell growth and blocking immune system inhibitors, etc. Monoclonal antibodies are also one of the important successful treatment strategies especially against HER2 but they have not been explored much for other types of breast cancers especially in triple negative breast cancers. Monoclonal antibodies impact the feasibility of antigen specificity, bispecific and trispecific mAbs have opened new doors for more targeted specific efficacy. Monoclonal antibodies can be used diversly and with efficacy as compared to other methods of treatment thus maining it a suitable candidate for breast cancer treatment. However, mAbs treatment also causes various side effects such as fever, trembling, fatigue, headache and muscle pain, nausea/vomiting, difficulty in breathing, rashes and bleeding. Understanding the pros and cons of this strategy, we have explored in this review, the current and future potential capabilities of monoclonal antibodies with respect to diagnosis and treatment of breast cancer. DATA AVAILABILITY: Not applicable.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Anticuerpos Monoclonales/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proliferación Celular
9.
J Polym Environ ; 31(3): 999-1018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36405816

RESUMEN

Combating triple-negative breast cancer (TNBC) is still a problem, despite the development of numerous drug delivery approaches. Mucin1 (MUC1), a glycoprotein linked to chemo-resistance and progressive malignancy, is unregulated in TNBC. GO-201, a MUC1 peptide inhibitor that impairs MUC1 activity, promotes necrotic cell death by binding to the MUC1-C unit. The current study deals with the synthesis and development of a novel nano-formulation (DM-PEG-PCL NPs) comprising of polyethylene glycol-polycaprolactone (PEG-PCL) polymer loaded with MUC1 inhibitor and an effective anticancer drug, doxorubicin (DOX). The DOX and MUC1 loaded nanoparticles were fully characterized, and their different physicochemical properties, viz. size, shape, surface charge, entrapment efficiencies, release behavior, etc., were determined. With IC50 values of 5.8 and 2.4 nm on breast cancer cell lines, accordingly, and a combination index (CI) of < 1.0, DM-PEG-PCL NPs displayed enhanced toxicity towards breast cancer cells (MCF-7 and MDA-MB-231) than DOX-PEG-PCL and MUC1i-PEG-PCL nanoparticles. Fluorescence microscopy analysis revealed DOX localization in the nucleus and MUC1 inhibitor in the mitochondria. Further, DM-PEG-PCL NPs treated breast cancer cells showed increased mitochondrial damage with enhancement in caspase-3 expression and reduction in Bcl-2 expression.In vivo evaluation using Ehrlich Ascites Carcinoma bearing mice explicitly stated that DM-PEG-PCL NPs therapy minimized tumor growth relative to control treatment. Further, acute toxicity studies did not reveal any adverse effects on organs and their functions, as no mortalities were observed. The current research reports for the first time the synergistic approach of combination entrapment of a clinical chemotherapeutic (DOX) and an anticancer peptide (MUC1 inhibitor) encased in a diblock PEG-PCL copolymer. Incorporating both DOX and MUC1 inhibitors in PEG-PCL NPs in the designed nanoformulation has provided chances and insights for treating triple-negative breast tumors. Our controlled delivery technology is biodegradable, non-toxic, and anti-multidrug-resistant. In addition, this tailored smart nanoformulation has been particularly effective in the therapy of triple-negative breast cancer. Supplementary Information: The online version contains supplementary material available at 10.1007/s10924-022-02654-4.

10.
Comp Funct Genomics ; 2012: 968267, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23226977

RESUMEN

Asthma has been an inflammatory disorder accompanied by tissue remodeling and protease-antiprotease imbalance in lungs. The SNPs of alpha-1 antitrypsin (α(1)AT) and tissue inhibitor of metalloproteinase-1 (TIMP-1) genes were studied for their association with asthma. Genotyping of α(1)AT and TIMP-1 genes was performed in 202 asthmatics and 204 controls. Serum levels of α(1)AT, TIMP-1 and cytokines were estimated to find if the interplay between genotypes and cellular biomarkers determines the pathogenesis of asthma. The analysis of results showed significantly low level of α(1)AT in the serum of asthmatics as compared to controls (P = 0.001), whereas cytokines were elevated in patients. No significant difference was observed in the concentration of TIMP-1 in patients and controls. Genotyping led to the identification of 3 SNPs (Val213Ala, Glu363Lys, and Glu376Asp) in α(1)AT gene. The novel SNP Glu363Lys of α(1)AT was found to be associated with asthma (P = 0.001). The analysis of TIMP-1 gene showed the occurrence of seven SNPs, including a novel intronic SNP at base G3774A. The allele frequency of G3774A and Phe124Phe was significantly higher in asthmatics as compared to controls. Thus, the SNP Glu363Lys of α(1)AT and G3774A and Phe124Phe of TIMP-1 could be important genetic markers for use in better management of the disease.

11.
Curr Drug Targets ; 23(16): 1465-1488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35748549

RESUMEN

Now-a-days fungal infection emerges as a significant problem to healthcare management systems due to high frequency of associated morbidity, mortality toxicity, drug-drug interactions, and resistance of the antifungal agents. Aspergillus is the most common mold that cause infection in immunocompromised hosts. It's a hyaline mold that is cosmopolitan and ubiquitous in nature. Aspergillus infects around 10 million population each year with a mortality rate of 30-90%. Clinically available antifungal formulations are restricted to four classes (i.e., polyene, triazole, echinocandin, and allylamine), and each of them have their own limitations associated with the activity spectrum, the emergence of resistance, and toxicity. Consequently, novel antifungal agents with modified and altered chemical structures are required to combat these invasive fungal infections. To overcome these limitations, there is an urgent need for new antifungal agents that can act as potent drugs in near future. Currently, some compounds have shown effective antifungal activity. In this review article, we have discussed all potential antifungal therapies that contain old antifungal drugs, combination therapies, and recent novel antifungal formulations, with a focus on the Aspergillus associated infections.


Asunto(s)
Antifúngicos , Aspergilosis , Micosis , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergillus , Farmacorresistencia Fúngica , Equinocandinas/farmacología , Equinocandinas/uso terapéutico , Micosis/tratamiento farmacológico
12.
Curr Drug Targets ; 23(2): 116-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34551694

RESUMEN

Fungal infections have shown an upsurge in recent decades, which is mainly because of the increasing number of immunocompromised patients and the occurrence of invasive candidiasis has been found to be 7-15 fold greater than that of invasive aspergillosis. The genus Candida comprises more than 150 distinct species, however, only a few of them are found to be pathogenic to humans. Mortality rates of Candida species are found to be around 45% and the reasons for this intensified mortality are inefficient diagnostic techniques and unfitting initial treatment strategies. There are only a few antifungal drug classes that are employed for the remedy of invasive fungal infections. which include azoles, polyenes, echinocandins, and pyrimidine analogs. During the last 2-3 decades, the usage of antifungal drugs has increased several folds due to which the reports of escalating antifungal drug resistance have also been recorded. The resistance is mostly to the triazole- based compounds. Due to the occurrence of antifungal drug resistance, the success rates of treatment have been reduced as well as major changes have been observed in the frequency of fungal infections. In this review, we have summarized the major molecular mechanisms for the development of antifungal drug resistance.


Asunto(s)
Candida , Micosis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica , Equinocandinas/farmacología , Equinocandinas/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico
13.
Curr Pharm Des ; 28(43): 3478-3485, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415093

RESUMEN

Colorectal cancer is the second leading cause of cancer deaths worldwide and has engrossed researchers' attention toward its detection and prevention at early stages. Primarily associated with genetic and environmental risk factors, the disease has also shown its emergence due to dysbiosis in microbiota. The microbiota not only plays a role in modulating the metabolisms of metastatic tissue but also has a keen role in cancer therapy. The immune cells are responsible for secreting various chemokines and cytokines, and activating pattern recognition receptors by different microbes can lead to the trail by which these cells regulate cancer. Furthermore, mixed immune reactions involving NK cells, tumor-associated macrophages, and lymphocytes have shown their connection with the microbial counterpart of the disease. The microbes like Bacteroides fragilis, Fusobacterium nucleatum, and Enterococcus faecalis and their metabolites have engendered inflammatory reactions in the tumor microenvironment. Hence the interplay between immune cells and various microbes is utilized to study the changing metastasis stage. Targeting either immune cells or microbiota could not serve as a key to tackling this deadly disorder. However, harnessing their complementation towards the disease can be a powerful weapon for developing therapy and diagnostic/prognostic markers. In this review, we have discussed various immune reactions and microbiome interplay in CRC, intending to evaluate the effectiveness of chemotherapy and immunotherapy and their parallel relationship.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Microbioma Gastrointestinal , Microbiota , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Microbioma Gastrointestinal/fisiología , Sistema Inmunológico , Microambiente Tumoral
14.
Mini Rev Med Chem ; 21(16): 2337-2346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33749563

RESUMEN

Fungi are recognized as key pathogens in immunocompromised patients. The invasive infection always remains a problem for clinicians due to high morbidity and mortality. The treatments of fungal infections are hampered by conventional drugs, which are associated with resistance. Drug resistance has become an important problem in a variety of infectious diseases. The rise in the incidence of fungal infections and drug resistance has intensified the need for alternative therapies that affect a new target. This new target must be a growth essential gene product like the stress pathway. It has been found that stress pathways can be a potential target in opportunistic fungal infection, which played an important role in the virulence of pathogens. It was helpful in protection from host defense, normal fungal growth, and antifungal drug resistance. The disruption of the pathway using alternative strategies (chemosensitization and photo-dynamics therapy) can be a novel approach in fighting fungal infections and for drug design.


Asunto(s)
Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Hongos/efectos de los fármacos , Micosis/tratamiento farmacológico , Micosis/microbiología , Animales , Diseño de Fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Humanos , Virulencia/efectos de los fármacos
15.
Curr Pharm Biotechnol ; 22(8): 1030-1045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32900347

RESUMEN

BACKGROUND: The major concern of today's time is the developing resistance in most of the clinically derived pathogenic micro-organisms for available drugs through several mechanisms. Therefore, there is a dire need to develop novel molecules with drug-like properties that can be effective against the otherwise resistant micro-organisms. METHODS: New drugs can be developed using several methods like structure-based drug design, ligandbased drug design, or by developing analogs of the available drugs to further improve their effects. However, the smartness is to opt for the techniques that have comparatively less expenditure, lower failure rates, and faster discovery rates. RESULTS: Analog-Based Drug Design (ABDD) is one such technique that researchers worldwide are opting to develop new drug-like molecules with comparatively lower market values. They start by first designing the analogs sharing structural and pharmacological similarities to the existing drugs. This method embarks on scaffold structures of available drugs already approved by the clinical trials, but are left ineffective because of resistance developed by the pathogens. CONCLUSION: In this review, we have discussed some recent examples of anti-fungal and anti-bacterial (antimicrobial) drugs that were designed based on the ABDD technique. Also, we have tried to focus on the in silico tools and techniques that can contribute to the designing and computational screening of the analogs, so that these can be further considered for in vitro screening to validate their better biological activities against the pathogens with comparatively reduced rates of failure.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Simulación por Computador , Humanos
16.
Curr Drug Targets ; 22(12): 1334-1345, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33494671

RESUMEN

The escalating emergence and prevalence of infections caused by multi-drug resistant (MDR) pathogenic bacteria accentuate the crucial need to develop novel and effectual therapeutic strategies to control this threat. The recent past surprisingly indicates a staggering decline in effective strategies against MDR. Different approaches have been employed to minimize the effect of resistance, but the question still lingers over the astounding number of drugs already tried and tested. Furthermore, the detection of new drug targets and the action of new antibacterial agents against already existing drug targets also complicate the condition. Antibiotic adjuvants are considered as one such promising approach for overcoming bacterial resistance. Adjuvants can potentiate the action of generally adopted antibacterial drugs against MDR bacterial pathogens either by minimizing the impact and emergence of resistance or improving the action of antibacterial drugs. This review provides an overview of the mechanism of antibiotic resistance, the main types of adjuvants and their mode of action, achievements and progression.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Humanos
17.
Curr Drug Targets ; 21(4): 365-373, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31549952

RESUMEN

The existence of the multi-drug resistant (MDR) pathogenic fungus, Candida auris came to light in 2009. This particular organism is capable of causing nosocomial infections in immunecompromised persons. This pathogen is associated with consistent candidemia with high mortality rate and presents a serious global health threat. Whole genome sequence (WGS) investigation detected powerful phylogeographic Candida auris genotypes which are specialized to particular geological areas indicating dissemination of particular genotype among provinces. Furthermore, this organism frequently exhibits multidrug-resistance and displays an unusual sensitivity profile. Identification techniques that are commercialized to test Candida auris often show inconsistent results and this misidentification leads to treatment failure which complicates the management of candidiasis. Till date, Candida auris has been progressively recorded from several countries and therefore its preventive control measures are paramount to interrupt its transmission. In this review, we discussed prevalence, biology, drug-resistance phenomena, virulence factors and management of Candida auris infections.


Asunto(s)
Candida/genética , Candida/patogenicidad , Candidiasis/tratamiento farmacológico , Candidiasis/epidemiología , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Adolescente , Adulto , Anciano , Antifúngicos/farmacología , Candida/citología , Candida/efectos de los fármacos , Candidiasis/microbiología , Candidiasis/prevención & control , Niño , Preescolar , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Farmacorresistencia Fúngica Múltiple/genética , Farmacorresistencia Fúngica Múltiple/fisiología , Femenino , Salud Global , Humanos , Lactante , Recién Nacido , Control de Infecciones , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Factores de Virulencia , Adulto Joven
18.
Curr Top Med Chem ; 19(2): 146-155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30465504

RESUMEN

BACKGROUND: Protein-Protein interaction (PPI) network analysis of virulence proteins of Aspergillus fumigatus is a prevailing strategy to understand the mechanism behind the virulence of A. fumigatus. The identification of major hub proteins and targeting the hub protein as a new antifungal drug target will help in treating the invasive aspergillosis. MATERIALS & METHOD: In the present study, the PPI network of 96 virulence (drug target) proteins of A. fumigatus were investigated which resulted in 103 nodes and 430 edges. Topological enrichment analysis of the PPI network was also carried out by using STRING database and Network analyzer a cytoscape plugin app. The key enriched KEGG pathway and protein domains were analyzed by STRING. CONCLUSION: Manual curation of PPI data identified three proteins (PyrABCN-43, AroM-34, and Glt1- 34) of A. fumigatus possessing the highest interacting partners. Top 10% hub proteins were also identified from the network using cytohubba on the basis of seven algorithms, i.e. betweenness, radiality, closeness, degree, bottleneck, MCC and EPC. Homology model and the active pocket of top three hub proteins were also predicted.


Asunto(s)
Antifúngicos/farmacología , Aspergilosis/tratamiento farmacológico , Aspergillus/patogenicidad , Descubrimiento de Drogas , Proteínas Fúngicas/fisiología , Mapas de Interacción de Proteínas , Factores de Virulencia , Antifúngicos/uso terapéutico , Simulación por Computador , Humanos
19.
Bioorg Med Chem Lett ; 18(6): 2156-61, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18281215

RESUMEN

A series of nine 3-arylamino-1-chloropropan-2-ols 2a-2i were synthesized and their anti-fungal activity against pathogenic strains of Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger and Candida albicans, and antibacterial activity against four pathogenic bacterial strains of Salmonella typhi, Pseudomonas aeruginosa, Streptococcus pneumonae and Staphylococcus aureus were evaluated using different assay systems. 1-Chloro-3-(4'-chlorophenylamino)-propan-2-ol was found to be the most active anti-fungal compound against three pathogenic strains under study, i.e., A. fumigatus, A. flavus and A. niger; the compound showed more than 90% inhibition of growth of A. fumigatus at a concentration of 5.85 microg/ml in disc diffusion assay. Interestingly, 1-chloro-3-(4'-chlorophenylamino)-propan-2-ol did not show any toxicity up to a concentration of 4000 microg/ml. Although 1-chloro-3-(4'-chlorophenylamino)-propan-2-ol was about 8 times less active than the standard compound amphotericin B, its toxicity was many more fold less than the toxicity of amphotericin B. Further, 1-chloro-3-(2',6'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol were found to be the most active compounds against C. albicans. In the anti-microbial assay, 1-chloro-3-(2',4'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol were found to be the most active compounds against Salmonella typhi and 1-chloro-3-(3',4'-dichlorophenylamino)-propan-2-ol was found to be the most active compound against P. aeruginosa. Although, the activities of 1-chloro-3-(2',4'-dichlorophenylamino)-propan-2-ol and 1-chloro-3-(3',5'-dichlorophenylamino)-propan-2-ol are about half the activity of the standard anti-bacterial compound tetracycline, these compounds also were many fold less toxic than the standard drug.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Hidrocarburos Clorados/síntesis química , Hidrocarburos Clorados/farmacología , Propanoles/síntesis química , Propanoles/farmacología , Anfotericina B/uso terapéutico , Aspergillus flavus/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Cromatografía en Gel , Espectroscopía de Resonancia Magnética , Estructura Molecular , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhi/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Relación Estructura-Actividad , Tetraciclina/farmacología
20.
Curr Top Med Chem ; 18(1): 88-97, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29412110

RESUMEN

BACKGROUND: The impact of fungal infections on human health has increased considerably within a past few decades. Although drugs with antifungal properties are available, but they are less effective and are associated with side effects. OBJECTIVE AND METHOD: To screen the bacterial isolates from Sesamum indicum and to investigate the antifungal activity of the screened bacterial isolates against Aspergillus sp. Co-culture assay and agar overlay were used to scrutinize the anti-Aspergillus activity. Furthermore, optimization of media and growth conditions to enhance the production of anti-Aspergillus compound. RESULTS: Several bacterial cultures were isolated from Sesamum indicum rhizosphere collected from Mandi (H.P.) India. These bacterial cultures were assayed for antifungal activity against Aspergillus species i.e. A. fumigatus and A. niger. Two most potent strains were chosen for more detailed analyses. The biochemical characterization and 16S ribosomal RNA sequencing revealed that Burkholderia sp. strain RC1 and Acinetobacter pittii strain RC2 exhibit strong similarity (100%) with Burkholderia sp. SR2-07 and Acinetobacter sp. strain 3-59. Additionally, it was also validated that RC1 and RC2 showed significant difference in the production of anti-Aspergillusactivity under altered growth conditions. CONCLUSION: Results from this study recommend that plant rhizosphere remains a rich hotspot for delivering a novel antifungal compounds.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Aspergillus/efectos de los fármacos , Raíces de Plantas/microbiología , Rizosfera , Sesamum/microbiología , Antifúngicos/química , Aspergillus/metabolismo , Relación Dosis-Respuesta a Droga , India , Pruebas de Sensibilidad Microbiana , Raíces de Plantas/metabolismo , Sesamum/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA