Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587100

RESUMEN

During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.


Asunto(s)
Dendritas , Proteínas de Drosophila , Proteínas Asociadas a Microtúbulos , Microtúbulos , Animales , Microtúbulos/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Drosophila melanogaster/metabolismo , Tubulina (Proteína)/metabolismo , Drosophila/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/citología
2.
PLoS Genet ; 15(8): e1007980, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381576

RESUMEN

Synaptic structure and activity are sensitive to environmental alterations. Modulation of synaptic morphology and function is often induced by signals from glia. However, the process by which glia mediate synaptic responses to environmental perturbations such as hypoxia remains unknown. Here, we report that, in the mutant for Trachealess (Trh), the Drosophila homolog for NPAS1 and NPAS3, smaller synaptic boutons form clusters named satellite boutons appear at larval neuromuscular junctions (NMJs), which is induced by the reduction of internal oxygen levels due to defective tracheal branches. Thus, the satellite bouton phenotype in the trh mutant is suppressed by hyperoxia, and recapitulated in wild-type larvae raised under hypoxia. We further show that hypoxia-inducible factor (HIF)-1α/Similar (Sima) is critical in mediating hypoxia-induced satellite bouton formation. Sima upregulates the level of the Wnt/Wingless (Wg) signal in glia, leading to reorganized microtubule structures within presynaptic sites. Finally, hypoxia-induced satellite boutons maintain normal synaptic transmission at the NMJs, which is crucial for coordinated larval locomotion.


Asunto(s)
Hipoxia de la Célula/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Transmisión Sináptica/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Microscopía Intravital , Larva/fisiología , Locomoción/genética , Microscopía Confocal , Microtúbulos/metabolismo , Modelos Animales , Neuroglía/citología , Neuroglía/metabolismo , Unión Neuromuscular/metabolismo , Terminales Presinápticos/metabolismo , Transducción de Señal/genética , Factores de Transcripción/genética , Regulación hacia Arriba , Proteína Wnt1/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(49): 24651-24661, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31666321

RESUMEN

Secreted exosomal microRNAs (miRNAs) mediate interorgan/tissue communications by modulating target gene expression, thereby regulating developmental and physiological functions. However, the source, route, and function in target cells have not been formally established for specific miRNAs. Here, we show that glial miR-274 non-cell-autonomously modulates the growth of synaptic boutons and tracheal branches. Whereas the precursor form of miR-274 is expressed in glia, the mature form of miR-274 distributes broadly, including in synaptic boutons, muscle cells, and tracheal cells. Mature miR-274 is secreted from glia to the circulating hemolymph as an exosomal cargo, a process requiring ESCRT components in exosome biogenesis and Rab11 and Syx1A in exosome release. We further show that miR-274 can function in the neurons or tracheal cells to modulate the growth of synaptic boutons and tracheal branches, respectively. Also, miR-274 uptake into the target cells by AP-2-dependent mechanisms modulates target cell growth. In the target cells, miR-274 down-regulates Sprouty (Sty) through a targeting sequence at the sty 3' untranslated region, thereby enhancing MAPK signaling and promoting cell growth. miR-274 expressed in glia of an mir-274 null mutant is released as an exosomal cargo in the circulating hemolymph, and such glial-specific expression resets normal levels of Sty and MAPK signaling and modulates target cell growth. mir-274 mutant larvae are hypersensitive to hypoxia, which is suppressed by miR-274 expression in glia or by increasing tracheal branches. Thus, glia-derived miR-274 coordinates growth of synaptic boutons and tracheal branches to modulate larval hypoxia responses.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/genética , MicroARNs/metabolismo , Neuroglía/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Modificados Genéticamente , Hipoxia de la Célula/genética , Regulación hacia Abajo , Exosomas/metabolismo , Femenino , Hemolinfa/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/genética , Mutación , Terminales Presinápticos/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Tráquea/crecimiento & desarrollo , Tráquea/metabolismo , Regulación hacia Arriba
4.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233046

RESUMEN

Parkinson's disease is one of the most common neurodegenerative diseases affecting the ageing population, with a prevalence that has doubled over the last 30 years. As the mechanism of the disease is not fully elucidated, the current treatments are unable to effectively prevent neurodegeneration. Studies have found that mutations in Leucine-rich-repeat-kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). Moreover, aberrant (higher) LRRK2 kinase activity has an influence in idiopathic PD as well. Hence, the aim of this review is to categorize and synthesize current information related to LRRK2-linked PD and present the factors associated with LRRK2 that can be targeted therapeutically. A systematic review was conducted using the databases PubMed, Medline, SCOPUS, SAGE, and Cochrane (January 2016 to July 2021). Search terms included "Parkinson's disease", "mechanism", "LRRK2", and synonyms in various combinations. The search yielded a total of 988 abstracts for initial review, 80 of which met the inclusion criteria. Here, we emphasize molecular mechanisms revealed in recent in vivo and in vitro studies. By consolidating the recent updates in the field of LRRK2-linked PD, researchers can further evaluate targets for therapeutic application.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Leucina/uso terapéutico , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética
5.
PLoS Genet ; 12(10): e1006362, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27736876

RESUMEN

In response to environmental and physiological changes, the synapse manifests plasticity while simultaneously maintains homeostasis. Here, we analyzed mutant synapses of henji, also known as dbo, at the Drosophila neuromuscular junction (NMJ). In henji mutants, NMJ growth is defective with appearance of satellite boutons. Transmission electron microscopy analysis indicates that the synaptic membrane region is expanded. The postsynaptic density (PSD) houses glutamate receptors GluRIIA and GluRIIB, which have distinct transmission properties. In henji mutants, GluRIIA abundance is upregulated but that of GluRIIB is not. Electrophysiological results also support a GluR compositional shift towards a higher IIA/IIB ratio at henji NMJs. Strikingly, dPAK, a positive regulator for GluRIIA synaptic localization, accumulates at the henji PSD. Reducing the dpak gene dosage suppresses satellite boutons and GluRIIA accumulation at henji NMJs. In addition, dPAK associated with Henji through the Kelch repeats which is the domain essential for Henji localization and function at postsynapses. We propose that Henji acts at postsynapses to restrict both presynaptic bouton growth and postsynaptic GluRIIA abundance by modulating dPAK.


Asunto(s)
Proteínas de Drosophila/genética , Unión Neuromuscular/genética , Receptores de Glutamato/genética , Receptores Ionotrópicos de Glutamato/genética , Sinapsis/genética , Quinasas p21 Activadas/genética , Animales , Moléculas de Adhesión Celular Neuronal/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Secuencia Kelch/genética , Microscopía Electrónica de Transmisión , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/genética
6.
Hum Mol Genet ; 25(10): 1965-1978, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26931464

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disorder that lacks a disease-modifying therapy. Leucine-rich repeat kinase 2 (LRRK2) was implicated as the most common genetic cause of PD. We previously established a LRRK2-G2019S Drosophila model that displayed the crucial phenotypes of LRRK2 parkinsonism. Here, we used a two-step approach to identify compounds from the FDA-approved licensed drug library that could suppress neurite degeneration in LRRK2-G2019S parkinsonism. Of 640 compounds, 29 rescued neurite degeneration phenotypes and 3 restored motor disability and dopaminergic neuron loss in aged LRRK2-G2019S flies. Of these three drugs, lovastatin had the highest lipophilicity, which facilitated crossing the blood-brain barrier. In LRRK2-G2019S knock-in mice and stably transfected human dopaminergic cells, lovastatin significantly rescued neurite degeneration in a dose-dependent manner, within a range of 0.05-0.1 µm The beneficial effect of lovastatin was exerted by activating anti-apoptotic Akt/Nrf signaling and decreasing caspase 3 levels. We also observed that lovastatin inhibited GSK3ß activity, a kinase downstream of Akt, by up-regulating GSK3ß (Ser9) phosphorylation. This inhibition subsequently decreased tau phosphorylation, which was linked to neuronal cytoskeleton instability. Conversely, pre-treatment with the Akt inhibitor, A6730, blocked the lovastatin-induced neuroprotective effect. The rescuing effects of lovastatin in dendritic arborization of LRRK2-G2019S neurons were abolished by co-expressing either a mutant allele of Akt (Akt104226) or a constitutively active form of GSK3ß (sggS9A). Our findings demonstrated that lovastatin restored LRRK2-G2019S neurite degeneration by augmenting Akt/NRF2 pathway and inhibiting downstream GSK3ß activity, which decreased phospho-tau levels. We suggested that lovastatin is a potential disease-modifying agent for LRRK2-G2019S parkinsonism.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Degeneración Nerviosa/tratamiento farmacológico , Enfermedad de Parkinson/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina Endopeptidasas/genética , Animales , Animales Modificados Genéticamente , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Drosophila melanogaster/genética , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/biosíntesis , Humanos , Lovastatina/administración & dosificación , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , Mutación , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Neuritas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/fisiopatología , Transducción de Señal/efectos de los fármacos
7.
PLoS Genet ; 10(11): e1004760, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25393278

RESUMEN

During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM.


Asunto(s)
Proteínas de Drosophila/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Péptido Hidrolasas/genética , Factores de Transcripción/genética , Alas de Animales/crecimiento & desarrollo , Animales , Complejo del Señalosoma COP9 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Complejos Multiproteicos/metabolismo , Mutación , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Péptido Hidrolasas/metabolismo , Factores de Transcripción/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(43): 17699-704, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23054837

RESUMEN

Retrograde signals induced by synaptic activities are derived from postsynaptic cells to potentiate presynaptic properties, such as cytoskeletal dynamics, gene expression, and synaptic growth. However, it is not known whether activity-dependent retrograde signals can also depotentiate synaptic properties. Here we report that laminin A (LanA) functions as a retrograde signal to suppress synapse growth at Drosophila neuromuscular junctions (NMJs). The presynaptic integrin pathway consists of the integrin subunit ßν and focal adhesion kinase 56 (Fak56), both of which are required to suppress crawling activity-dependent NMJ growth. LanA protein is localized in the synaptic cleft and only muscle-derived LanA is functional in modulating NMJ growth. The LanA level at NMJs is inversely correlated with NMJ size and regulated by larval crawling activity, synapse excitability, postsynaptic response, and anterograde Wnt/Wingless signaling, all of which modulate NMJ growth through LanA and ßν. Our data indicate that synaptic activities down-regulate levels of the retrograde signal LanA to promote NMJ growth.


Asunto(s)
Drosophila/fisiología , Laminina/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Transducción de Señal , Sinapsis/fisiología , Animales
9.
Biochem Biophys Res Commun ; 452(3): 369-75, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25152394

RESUMEN

Ubiquitination and the reverse process deubiquitination regulate protein stability and function during animal development. The Drosophila USP5 homolog Leon functions as other family members of unconventional deubiquitinases, disassembling free, substrate-unconjugated polyubiquitin chains to replenish the pool of mono-ubiquitin, and maintaining cellular ubiquitin homeostasis. However, the significance of Leon/USP5 in animal development is still unexplored. In this study, we generated leon mutants to show that Leon is essential for animal viability and tissue integrity during development. Both free and substrate-conjugated polyubiquitin chains accumulate in leon mutants, suggesting that abnormal ubiquitin homeostasis caused tissue disorder and lethality in leon mutants. Further analysis of protein expression profiles in leon mutants shows that the levels of all proteasomal subunits were elevated. Also, proteasomal enzymatic activities were elevated in leon mutants. However, proteasomal degradation of ubiquitinated substrates was impaired. Thus, aberrant ubiquitin homeostasis in leon mutants disrupts normal proteasomal degradation, which is compensated by elevating the levels of proteasomal subunits and activities. Ultimately, the failure to fully compensate the dysfunctional proteasome in leon mutants leads to animal lethality and tissue disorder.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteasas Ubiquitina-Específicas/genética , Ubiquitina/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Genes Letales , Homeostasis/genética , Discos Imaginales/anomalías , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Mutación , Poliubiquitina/genética , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Proteolisis , Transducción de Señal , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
10.
Nat Commun ; 15(1): 7402, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191750

RESUMEN

During neuronal pruning, phagocytes engulf shed cellular debris to avoid inflammation and maintain tissue homeostasis. How phagocytic receptors recognize degenerating neurites had been unclear. Here, we identify two glucosyltransferases Alg8 and Alg10 of the N-glycosylation pathway required for dendrite fragmentation and clearance through genetic screen. The scavenger receptor Draper (Drpr) is N-glycosylated with complex- or hybrid-type N-glycans that interact specifically with galectins. We also identify the galectins Crouching tiger (Ctg) and Hidden dragon (Hdg) that interact with N-glycosylated Drpr and function in dendrite pruning via the Drpr pathway. Ctg and Hdg are required in hemocytes for expression and function, and are induced during dendrite injury to localize to injured dendrites through specific interaction with exposed phosphatidylserine (PS) on the surface membrane of injured dendrites. Thus, the galectins Ctg and Hdg bridge the interaction between PS and N-glycosylated Drpr, leading to the activation of phagocytosis.


Asunto(s)
Dendritas , Galectinas , Hemocitos , Fagocitosis , Fosfatidilserinas , Animales , Fosfatidilserinas/metabolismo , Glicosilación , Galectinas/metabolismo , Hemocitos/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
11.
J Neurosci ; 32(47): 16971-81, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175848

RESUMEN

Neurofibromatosis type I (NF1), caused by the mutation in the NF1 gene, is characterized by multiple pathological symptoms. Importantly, ~50% of NF1 patients also suffer learning difficulty. Although downstream pathways are well studied, regulation of the NF1-encoded neurofibromin protein is less clear. Here, we focused on the pathophysiology of Drosophila NF1 mutants in synaptic growth at neuromuscular junctions. Our analysis suggests that the Drosophila neurofibromin protein NF1 is required to constrain synaptic growth and transmission. NF1 functions downstream of the Drosophila focal adhesion kinase (FAK) Fak56 and physically interacts with Fak56. The N-terminal region of NF1 mediates the interaction with Fak56 and is required for the signaling activity and presynaptic localization of NF1. In presynapses, NF1 acts via the cAMP pathway, but independent of its GAP activity, to restrain synaptic growth. Thus, presynaptic FAK signaling may be disrupted, causing abnormal synaptic growth and transmission in the NF1 genetic disorder.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Quinasa 1 de Adhesión Focal/fisiología , Proteínas del Tejido Nervioso/fisiología , Unión Neuromuscular/fisiología , Sinapsis/fisiología , Proteínas Activadoras de ras GTPasa/fisiología , Adenilil Ciclasas/fisiología , Animales , AMP Cíclico/fisiología , Fenómenos Electrofisiológicos/fisiología , Femenino , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Larva , Masculino , Microscopía Electrónica , Mutación/fisiología , Receptores Presinapticos/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología
12.
Cell Death Dis ; 14(8): 540, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607937

RESUMEN

Accumulating evidence has shown that the quality of proteins must be tightly monitored and controlled to maintain cellular proteostasis. Misfolded proteins and protein aggregates are targeted for degradation through the ubiquitin proteasome (UPS) and autophagy-lysosome systems. The ubiquitination and deubiquitinating enzymes (DUBs) have been reported to play pivotal roles in the regulation of the UPS system. However, the function of DUBs in the regulation of autophagy remain to be elucidated. In this study, we found that knockdown of Leon/USP5 caused a marked increase in the formation of autophagosomes and autophagic flux under well-fed conditions. Genetic analysis revealed that overexpression of Leon suppressed Atg1-induced cell death in Drosophila. Immunoblotting assays further showed a strong interaction between Leon/USP5 and the autophagy initiating kinase Atg1/ULK1. Depletion of Leon/USP5 led to increased levels of Atg1/ULK1. Our findings indicate that Leon/USP5 is an autophagic DUB that interacts with Atg1/ULK1, negatively regulating the autophagic process.


Asunto(s)
Autofagia , Proteínas de Drosophila , Animales , Autofagia/genética , Autofagosomas , Muerte Celular , Drosophila , Lisosomas , Complejo de la Endopetidasa Proteasomal , Ubiquitina , Enzimas Desubicuitinizantes , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas de Drosophila/genética , Proteasas Ubiquitina-Específicas/genética
13.
Nat Cell Biol ; 7(10): 1014-20, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16127432

RESUMEN

Cullin family proteins organize ubiquitin ligase (E3) complexes to target numerous cellular proteins for proteasomal degradation. Neddylation, the process that conjugates the ubiquitin-like polypeptide Nedd8 to the conserved lysines of cullins, is essential for in vivo cullin-organized E3 activities. Deneddylation, which removes the Nedd8 moiety, requires the isopeptidase activity of the COP9 signalosome (CSN). Here we show that in cells deficient for CSN activity, cullin1 (Cul1) and cullin3 (Cul3) proteins are unstable, and that to preserve their normal cellular levels, CSN isopeptidase activity is required. We further show that neddylated Cul1 and Cul3 are unstable - as suggested by the evidence that Nedd8 promotes the instability of both cullins - and that the unneddylatable forms of cullins are stable. The protein stability of Nedd8 is also subject to CSN regulation and this regulation depends on its cullin-conjugating ability, suggesting that Nedd8-conjugated cullins are degraded en bloc. We propose that while Nedd8 promotes cullin activation through neddylation, neddylation also renders cullins unstable. Thus, CSN deneddylation recycles the unstable, neddylated cullins into stable, unneddylated ones, and promotes cullin-organized E3 activity in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Ubiquitinas/metabolismo , Animales , Complejo del Señalosoma COP9 , Liasas de Carbono-Nitrógeno/metabolismo , Células Cultivadas , Proteínas de Drosophila , Drosophila melanogaster , Larva , Complejos Multiproteicos/metabolismo , Proteína NEDD8 , Péptido Hidrolasas/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(16): 6778-83, 2009 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-19346490

RESUMEN

Gliogenesis in animal development is spatiotemporally regulated so that correct numbers of glia are present to support various neuronal functions. During Drosophila embryonic development, the glial regulatory gene, glial cell missing/glial cell deficient (gcm/glide), promotes glial cell fate and differentiation. Here we describe the ubiquitin-proteasome regulation of the Gcm protein and the consequence in gliogenesis without timely degradation of Gcm. Gcm binds to 2 F-box proteins, Supernumerary limbs (Slimb) and Archipelago (Ago), adaptors of SCF E3 ubiquitin ligases. Ubiquitination and proteasomal degradation of Gcm depend on slimb and ago. In slimb and ago double mutants, Gcm protein levels are enhanced. Concomitantly, glial cell numbers increase owing to proliferation, which can be phenocopied by Gcm overexpression only at the onset of glial differentiation. The glial lineage 5-6A in slimb ago mutants displays excess glial progenies and enhanced Gcm protein levels. We propose that downregulation of Gcm protein levels by Slimb and Ago is required for glial progenitors to exit the cell cycle for differentiation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Procesamiento Proteico-Postraduccional , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Drosophila melanogaster/citología , Proteínas F-Box/metabolismo , Dosificación de Gen , Mutación/genética , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Supresión Genética , Ubiquitinación
15.
Dev Dyn ; 240(1): 122-34, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21117153

RESUMEN

Axon guidance needs help from the glial cell system during embryogenesis. In the Drosophila embryonic central nervous system (CNS), longitudinal glia (LG) have been implicated in axon guidance but the mechanism remains unclear. We identified the protein encoded by the Drosophila gene unzipped (uzip) as a novel cell adhesion molecule (CAM). Uzip expressed in Drosophila S2 cells triggered cell aggregation through homophilic binding. In the embryonic CNS, Uzip was mainly produced by the LG but was also located at axons, which is consistent with the secretion of Uzip expressed in cultured cells. Although uzip mutants displayed no axonal defect, loss of uzip enhanced the axonal defects in the mutant of N-cadherin (CadN) and the Wnt gene family member wnt5. Overexpression of uzip could rescue the phenotype in the CadNuzip(D43) mutant. Thus, Uzip is a novel CAM from the LG regulating axon guidance.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/genética , Neuroglía/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Adhesión Celular/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Células Cultivadas , Secuencia Conservada , Drosophila/embriología , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Modelos Biológicos , Unión Proteica/genética , Transfección , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
16.
Cell Rep ; 40(12): 111372, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130510

RESUMEN

Golgi outposts (GOPs) in dendrites are known for their role in promoting branch extension, but whether GOPs have other functions is unclear. We found that terminal branches of Drosophila class IV dendritic arborization (C4da) neurons actively grow during the early third-instar (E3) larval stage but retract in the late third (L3) stage. Interestingly, the Fringe (Fng) glycosyltransferase localizes increasingly at GOPs in distal dendritic regions through the E3 to the L3 stage. Expression of the endopeptidase Furin 2 (Fur2), which proteolyzes and inactivates Fng, decreases from E3 to L3 in C4da neurons, thereby increasing Fng-positive GOPs in dendrites. The epidermal Delta ligand and neuronal Notch receptor, the substrate for Fng-mediated O-glycosylation, also negatively regulate dendrite growth. Fng inhibits actin dynamics in dendrites, linking dendritic branch retraction to suppression of the C4da-mediated thermal nociception response in late larval stages. Thus, Fng-positive GOPs function in dendrite retraction, which would add another function to the repertoire of GOPs in dendrite arborization.


Asunto(s)
Dendritas , Proteínas de Drosophila , Actinas/metabolismo , Animales , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Furina/metabolismo , Glicosiltransferasas/metabolismo , Larva/metabolismo , Ligandos , Receptores Notch/metabolismo , Células Receptoras Sensoriales/metabolismo
17.
J Neurosci ; 30(39): 13138-49, 2010 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-20881132

RESUMEN

Intraneuronal tau aggregations are distinctive pathological features of Parkinson's disease (PD) with autosomal-dominant mutations in leucine-rich repeat kinase 2 (LRRK2). The most prevalent LRRK2 mutation, G2019S (glycine to serine substitution at amino acid 2019), causes neurite shrinkage through unclear pathogenetic mechanisms. We found that expression of G2019S mutant in Drosophila dendritic arborization neurons induces mislocalization of the axonal protein tau in dendrites and causes dendrite degeneration. G2019S-induced dendrite degeneration is suppressed by reducing the level of tau protein and aggravated by tau coexpression. Additional genetic analyses suggest that G2019S and tau function synergistically to cause microtubule fragmentation, inclusion formation, and dendrite degeneration. Mechanistically, hyperactivated G2019S promotes tau phosphorylation at the T212 site by the Drosophila glycogen synthase kinase 3ß homolog Shaggy (Sgg). G2019S increases the recruitment of autoactivated Sgg, thus inducing hyperphosphorylation and mislocalization of tau with resultant dendrite degeneration.


Asunto(s)
Dendritas/patología , Proteínas de Drosophila/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas tau/metabolismo , Sustitución de Aminoácidos/genética , Animales , Animales Modificados Genéticamente , Dendritas/enzimología , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Activación Enzimática/genética , Glucógeno Sintasa Quinasa 3/fisiología , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Degeneración Nerviosa/enzimología , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/fisiología
18.
Dev Cell ; 10(6): 719-29, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16740475

RESUMEN

The Ci/Gli family of transcription factors mediates Hedgehog (Hh) signaling in many key developmental processes. Here we identify a Hh-induced MATH and BTB domain containing protein (HIB) as a negative regulator of the Hh pathway. Overexpressing HIB down regulates Ci and blocks Hh signaling, whereas inactivating HIB results in Ci accumulation and enhanced pathway activity. HIB binds the N- and C-terminal regions of Ci, both of which mediate Ci degradation. HIB forms a complex with Cul3, a scaffold for modular ubiquitin ligases, and promotes Ci ubiquitination and degradation through Cul3. Furthermore, HIB-mediated Ci degradation is stimulated by Hh and inhibited by Suppressor of Fused (Sufu). The mammalian homolog of HIB, SPOP, can functionally substitute for HIB, and Gli proteins are degraded by HIB/SPOP in Drosophila. We provide evidence that HIB prevents aberrant Hh signaling posterior to the morphogenic furrow, which is essential for normal eye development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/metabolismo , Proteínas Oncogénicas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Drosophila/citología , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Embrión no Mamífero , Eliminación de Gen , Dosificación de Gen , Genes de Insecto , Glutatión Transferasa/metabolismo , Proteínas Hedgehog , Proteínas de Insectos/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Biológicos , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transgenes , Proteína con Dedos de Zinc GLI1
19.
Rev Neurosci ; 22(4): 411-8, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21679126

RESUMEN

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) play a major role in the development of Parkinson's disease. The most frequently defined mutations of LRRK2 are located in the central catalytic region of the LRRK2 protein, suggesting that dysregulations of its enzymatic activities contribute to PD pathogenesis. Herein, we review recent progress in research concerning how LRRK2 mutations affect cellular pathways and lead to neuronal degeneration. We also summarize recent evidence revealing the endogenous function of LRRK2 protein within cells. These concepts can be used to further understand disease pathophysiology and serve as a platform to develop therapeutic strategies for the treatment of Parkinson's disease.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Modelos Biológicos , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología
20.
Trends Cell Biol ; 16(7): 362-9, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16762551

RESUMEN

Neddylation, a process that conjugates the ubiquitin-like polypeptide NEDD8 to cullin proteins, activates cullin-RING ubiquitin ligases (CRLs). Deneddylation, in which the COP9 signalosome (CSN) removes NEDD8 from cullins, inactivates CRLs. However, genetic studies of CSN function conclude that deneddylation also promotes CRL activity. It has been proposed that a cyclic transition through neddylation and deneddylation is required for the regulation of CRL activity in vivo. Recent discoveries suggest that an additional level of complexity exists, whereby CRL components are targets for degradation, mediated either by autocatalytic ubiquitination or by unknown mechanisms. Deneddylation by CSN and deubiquitylation by CSN-associated ubiquitin-specific protease 12 protect CRL components from cellular depletion, thus maintaining the physiological CRL activities.


Asunto(s)
Proteínas Cullin/metabolismo , Endopeptidasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas de Arabidopsis/metabolismo , Complejo del Señalosoma COP9 , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA