Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(47): e2300308120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37976261

RESUMEN

Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.


Asunto(s)
Células Madre Pluripotentes Inducidas , Atrofia Muscular Espinal , Animales , Humanos , Ratones , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Degeneración Nerviosa/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
2.
BMC Med Educ ; 24(1): 326, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519950

RESUMEN

BACKGROUND: The abrupt onset of the COVID-19 pandemic compelled universities to swiftly establish online teaching and learning environments that were not only immediately deployable but also conducive to high-quality education. This study aimed to compare the effectiveness of the online synchronous and asynchronous teaching formats in the dermatology lecture for undergraduate medical students, including academic performance, self-efficacy, and cognitive load. METHODS: A total of 170 fourth-year undergraduate medical students attending the dermatology lecture were included. The lecture was delivered using both the synchronous method (live online lecture via Webex meeting) and the asynchronous method (lecture videos shared on YouTube). The students had the freedom to choose their preferred method of attending the online lecture. The study assessed three main aspects: (1) learning outcomes measured through pretest, posttest, and retention test scores; (2) cognitive load experienced by students, including mental load and mental effort measured using eight items; and (3) satisfaction levels with each online teaching format. RESULTS: In this study, 70 students opted for the synchronous online lecture, while 100 students chose the asynchronous online lecture. Both synchronous and asynchronous teaching methods exhibited significant improvements in post and retention test scores compared to the pretest. Satisfaction levels, rated on a scale of 0-5, were generally high for both teaching methods, with no significant differences observed (4.6 for synchronous, 4.53 for asynchronous; p =.350). Regarding cognitive load, the synchronous method showed a significantly lower level than the asynchronous method (p =.0001). Subgroup analysis revealed no difference in mental effort (p =.0662), but the level of mental load was lower in the synchronous method (p =.0005). CONCLUSIONS: Both synchronous and asynchronous online teaching methods demonstrated improvements in learning outcomes and high levels of student satisfaction. However, the cognitive load experienced by students was lower in the synchronous setting compared to the asynchronous setting. These findings remind health professions educators that they would consider the students' cognitive load when designing online curricula.


Asunto(s)
Educación a Distancia , Estudiantes de Medicina , Humanos , Pandemias , Evaluación Educacional/métodos , Estudiantes de Medicina/psicología , Cognición
3.
Hum Mol Genet ; 31(1): 82-96, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34368854

RESUMEN

Spinal muscular atrophy (SMA) is caused by the loss of the survival motor neuron 1 (SMN1) gene function. The related SMN2 gene partially compensates but produces insufficient levels of SMN protein due to alternative splicing of exon 7. Evrysdi™ (risdiplam), recently approved for the treatment of SMA, and related compounds promote exon 7 inclusion to generate full-length SMN2 mRNA and increase SMN protein levels. SMNΔ7 type I SMA mice survive without treatment for ~17 days. SMN2 mRNA splicing modulators increase survival of SMN∆7 mice with treatment initiated at postnatal day 3 (PND3). To define SMN requirements for adult mice, SMNΔ7 mice were dosed with an SMN2 mRNA splicing modifier from PND3 to PND40, then dosing was stopped. Mice not treated after PND40 showed progressive weight loss, necrosis, and muscle atrophy after ~20 days. Male mice presented a more severe phenotype than female mice. Mice dosed continuously did not show disease symptoms. The estimated half-life of SMN protein is 2 days indicating that the SMA phenotype reappeared after SMN protein levels returned to baseline. Although SMN protein levels decreased with age in mice and SMN protein levels were higher in brain than in muscle, our studies suggest that SMN protein is required throughout the life of the mouse and is especially essential in adult peripheral tissues including muscle. These studies indicate that drugs such as risdiplam will be optimally therapeutic when given as early as possible after diagnosis and potentially will be required for the life of an SMA patient.


Asunto(s)
Atrofia Muscular Espinal , Empalme Alternativo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Exones , Femenino , Humanos , Masculino , Ratones , Atrofia Muscular Espinal/metabolismo , Empalme del ARN , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora
4.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36902367

RESUMEN

T7 RNA polymerase is the most widely used enzyme in RNA synthesis, and it is also used for RNA labeling in position-selective labeling of RNA (PLOR). PLOR is a liquid-solid hybrid phase method that has been developed to introduce labels to specific positions of RNA. Here, we applied PLOR as a single-round transcription method to quantify the terminated and read-through products in transcription for the first time. Various factors, including pausing strategies, Mg2+, ligand and the NTP concentration at the transcriptional termination of adenine riboswitch RNA have been characterized. This helps to understand transcription termination, which is one of the least understood processes in transcription. Additionally, our strategy can potentially be used to study the co-transcription behavior of general RNA, especially when continuous transcription is not desired.


Asunto(s)
ARN , Riboswitch , ARN/genética , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/genética , Adenina
5.
Am J Hum Genet ; 104(4): 638-650, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30905397

RESUMEN

Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.


Asunto(s)
Disautonomía Familiar/terapia , Cinetina/uso terapéutico , Propiocepción , Empalme del ARN , Factores de Elongación Transcripcional/genética , Alelos , Animales , Conducta Animal , Línea Celular , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Exones , Fibroblastos , Genotipo , Humanos , Intrones , Cinetina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Neuronas/metabolismo , Fenotipo
6.
Small ; 18(5): e2104168, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34821034

RESUMEN

A multifunctional ion-sensitive floating gate Fin field-effect transistor (ISFGFinFET) for hydrogen and sodium detection is demonstrated. The ISFGFinFET comprises a FGFET and a sensing film, both of which are used to detect and improve sensitivity. The sensitivity of the ISFGFinFET can be adjusted by modulating the coupling effect of the FG. A nanoseaweed structure is fabricated via glancing angle deposition (GLAD) technology to obtain a large sensing area to enhance the sensitivity for hydrogen ion detection. A sensitivity of 266 mV per pH can be obtained using a surface area of 3.28 mm2 . In terms of sodium ion detection, a calix[4]arene sensing film to monitor sodium ions, obtaining a Na+ sensitivity of 432.7 mV per pNa, is used. In addition, the ISFGFinFET demonstrates the functionality of multiple ions detection simultaneously. The sensor arrays composed of 3 × 3 pixels are demonstrated, each of which comprise of an FGFET sensor and a transistor. Furthermore, 16 × 16 arrays with a decoder and other peripheral circuits are constructed and simulated. The performance of the proposed ISFGFinFET is competitive with that of other state-of-the-art ion sensors.


Asunto(s)
Técnicas Biosensibles , Transistores Electrónicos , Técnicas Biosensibles/métodos , Iones , Tecnología
7.
Am J Hum Genet ; 102(2): 219-232, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29336782

RESUMEN

Amyloidosis cutis dyschromica (ACD) is a distinct form of primary cutaneous amyloidosis characterized by generalized hyperpigmentation mottled with small hypopigmented macules on the trunks and limbs. Affected families and sporadic case subjects have been reported predominantly in East and Southeast Asian ethnicities; however, the genetic cause has not been elucidated. We report here that the compound heterozygosity or homozygosity of GPNMB truncating alleles is the cause of autosomal-recessive ACD. Six nonsense or frameshift mutations were identified in nine individuals diagnosed with ACD. Immunofluorescence analysis of skin biopsies showed that GPNMB is expressed in all epidermal cells, with the highest staining observed in melanocytes. GPNMB staining is significantly reduced in the lesional skin of affected individuals. Hyperpigmented lesions exhibited significantly increased amounts of DNA/keratin-positive amyloid deposits in the papillary dermis and infiltrating macrophages compared with hypo- or depigmented macules. Depigmentation of the lesions was attributable to loss of melanocytes. Intracytoplasmic fibrillary aggregates were observed in keratinocytes scattered in the lesional epidermis. Thus, our analysis indicates that loss of GPNMB, which has been implicated in melanosome formation, autophagy, phagocytosis, tissue repair, and negative regulation of inflammation, underlies autosomal-recessive ACD and provides insights into the etiology of amyloidosis and pigment dyschromia.


Asunto(s)
Amiloidosis Familiar/genética , Genes Recesivos , Predisposición Genética a la Enfermedad , Glicoproteínas de Membrana/genética , Enfermedades Cutáneas Genéticas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Recuento de Células , Niño , Preescolar , Dermis/patología , Dermis/ultraestructura , Epidermis/metabolismo , Epidermis/patología , Femenino , Células HeLa , Humanos , Hiperpigmentación/genética , Queratinocitos/patología , Queratinocitos/ultraestructura , Macrófagos/metabolismo , Masculino , Melanocitos/metabolismo , Glicoproteínas de Membrana/química , Mutación/genética , Linaje
8.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360794

RESUMEN

Spinal muscular atrophy (SMA) is a motor neuron disease caused by insufficient levels of the survival motor neuron (SMN) protein. One of the most prominent pathological characteristics of SMA involves defects of the neuromuscular junction (NMJ), such as denervation and reduced clustering of acetylcholine receptors (AChRs). Recent studies suggest that upregulation of agrin, a crucial NMJ organizer promoting AChR clustering, can improve NMJ innervation and reduce muscle atrophy in the delta7 mouse model of SMA. To test whether the muscle-specific kinase (MuSK), part of the agrin receptor complex, also plays a beneficial role in SMA, we treated the delta7 SMA mice with an agonist antibody to MuSK. MuSK agonist antibody #13, which binds to the NMJ, significantly improved innervation and synaptic efficacy in denervation-vulnerable muscles. MuSK agonist antibody #13 also significantly increased the muscle cross-sectional area and myofiber numbers in these denervation-vulnerable muscles but not in denervation-resistant muscles. Although MuSK agonist antibody #13 did not affect the body weight, our study suggests that preservation of NMJ innervation by the activation of MuSK may serve as a complementary therapy to SMN-enhancing drugs to maximize the therapeutic effectiveness for all types of SMA patients.


Asunto(s)
Neuronas Motoras/enzimología , Atrofia Muscular Espinal/enzimología , Unión Neuromuscular/enzimología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Modelos Animales de Enfermedad , Activación Enzimática , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Proteínas Tirosina Quinasas Receptoras/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
9.
Genes Dev ; 26(16): 1874-84, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22895255

RESUMEN

Antisense oligonucleotides (ASOs) are versatile molecules that can be designed to specifically alter splicing patterns of target pre-mRNAs. Here we exploit this feature to phenocopy a genetic disease. Spinal muscular atrophy (SMA) is a motor neuron disease caused by loss-of-function mutations in the SMN1 gene. The related SMN2 gene expresses suboptimal levels of functional SMN protein due to alternative splicing that skips exon 7; correcting this defect-e.g., with ASOs-is a promising therapeutic approach. We describe the use of ASOs that exacerbate SMN2 missplicing and phenocopy SMA in a dose-dependent manner when administered to transgenic Smn(-/-) mice. Intracerebroventricular ASO injection in neonatal mice recapitulates SMA-like progressive motor dysfunction, growth impairment, and shortened life span, with α-motor neuron loss and abnormal neuromuscular junctions. These SMA-like phenotypes are prevented by a therapeutic ASO that restores correct SMN2 splicing. We uncovered starvation-induced splicing changes, particularly in SMN2, which likely accelerate disease progression. These results constitute proof of principle that ASOs designed to cause sustained splicing defects can be used to induce pathogenesis and rapidly and accurately model splicing-associated diseases in animals. This approach allows the dissection of pathogenesis mechanisms, including spatial and temporal features of disease onset and progression, as well as testing of candidate therapeutics.


Asunto(s)
Técnicas Genéticas , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Animales , Terapia Genética , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/patología , Oligonucleótidos Antisentido , Empalme del ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
10.
Phys Chem Chem Phys ; 21(15): 7867-7873, 2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916063

RESUMEN

Herein, four pyridine-based chelating ligands, including 1,10-phenanthroline, 4,4'-bipyridine, 4,7-diphenyl-1,10-phenanthroline (Bphen) and pyridine, are used as surface treatment agents for improving the electronic properties of perovskite materials. The results of the steady-state photoluminescence (PL), time resolved PL and hole-only devices made of CH3NH3PbBr3 thin films suggest that the traps are effectively passivated after post-deposition surface treatment with bidentate chelating ligands, including 1,10-phenanthroline and 4,4'-bipyridine. Furthermore, the coordination capability of Bphen was suppressed which is probably due to its two additional phenyl groups, resulting in a steric hindrance effect. When compared with mono-dentate chelating pyridine, bidentate chelating ligands are more active in the current study. Finally, perovskite light-emitting diodes (PeLEDs) are fabricated and the devices exhibit a nearly doubled device efficiency after passivation with 1,10-phenanthroline. It is anticipated that the approach proposed here is a general method for improving the photonic properties of perovskite materials and the device performance of PeLEDs.

11.
Sensors (Basel) ; 19(7)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30986913

RESUMEN

In this work, we present a novel pH sensor using efficient laterally coupled structure enabled by Complementary Metal-Oxide Semiconductor (CMOS) Fin Field-Effect Transistor (FinFET) processes. This new sensor features adjustable sensitivity, wide sensing range, multi-pad sensing capability and compatibility to advanced CMOS technologies. With a self-balanced readout scheme and proposed corresponding circuit, the proposed sensor is found to be easily embedded into integrated circuits (ICs) and expanded into sensors array. To ensure the robustness of this new device, the transient response and noise analysis are performed. In addition, an embedded calibration operation scheme is implemented to prevent the proposed sensing device from the background offset from process variation, providing reliable and stable sensing results.

12.
Dev Dyn ; 247(12): 1264-1275, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30358936

RESUMEN

BACKGROUND: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator-activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear. RESULTS: We examined the function of Pparα in the neural development of zebrafish. Two duplicate paralogs for mammalian PPARA/Ppara, namely pparaa and pparab, are present in the zebrafish genome. Both pparaa and pparab are expressed in the developing central nervous system in zebrafish embryos. Inhibiting the function of Pparα by using either the PPARα/Pparα antagonist GW6471 or pparaa or pparab truncated constructs produced identical phenotypes, which were sufficient to reduce the proliferation of neuronal and glial precursor cells without affecting the formation of neural progenitors. CONCLUSIONS: We demonstrated that both Pparαa and Pparαb proteins are essential regulators of the proliferation of neuronal and glial precursors. This study provides a better understanding of the functions of PPARα/Pparα in neural development and further expands our knowledge of the potential role of PPARα/Pparα in neurological disorders and brain tumors. Developmental Dynamics 247:1264-1275, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Sistema Nervioso Central/citología , Neuroglía/citología , Neuronas/citología , PPAR alfa/fisiología , Células Madre/citología , Animales , Sistema Nervioso Central/embriología , Neurogénesis , PPAR alfa/deficiencia , Pez Cebra/embriología
13.
Hum Mol Genet ; 25(5): 964-75, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26758873

RESUMEN

Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.


Asunto(s)
Folistatina/farmacología , Factores Inmunológicos/farmacología , Atrofia Muscular Espinal/tratamiento farmacológico , Empalme del ARN/efectos de los fármacos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/agonistas , Adolescente , Adulto , Edad de Inicio , Animales , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Miostatina/antagonistas & inhibidores , Miostatina/genética , Miostatina/metabolismo , Fenotipo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
15.
Hum Mol Genet ; 25(10): 1885-1899, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26931466

RESUMEN

Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.


Asunto(s)
Isocumarinas/administración & dosificación , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Piperazinas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/farmacocinética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Animales , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Exones/genética , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/sangre , Atrofia Muscular Espinal/patología , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , Piel/metabolismo , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Proteína 2 para la Supervivencia de la Neurona Motora/sangre
16.
Opt Express ; 26(1): 552-558, 2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29328332

RESUMEN

A novel method of detection wavelength tuning for surface plasmon coupled quantum well infrared photodetectors (QWIPs) was demonstrated. By changing of the thickness of the top contact layer, the detection wavelength can be adjusted. The displacement of the detection wavelength is related to the effective dielectric constant of the dielectric layers in the device structure. The peak wavelength moves toward longer wavelength as the contact layer thickness decreases. With a proper match of the 2D metal hole array and the QW absorption region, the responsivity can be kept within a reasonable range for samples with different top contact layer thicknesses.

17.
Proc Natl Acad Sci U S A ; 112(28): 8768-73, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26124107

RESUMEN

Decline in mitochondrial morphology and function is a hallmark of neuronal aging. Here we report that progressive mitochondrial fragmentation is a common manifestation of aging Caenorhabditis elegans neurons and body wall muscles. We show that sensory-evoked activity was essential for maintaining neuronal mitochondrial morphology, and this activity-dependent mechanism required the Degenerin/ENaC sodium channel MEC-4, the L-type voltage-gated calcium channel EGL-19, and the Ca/calmodulin-dependent kinase II (CaMKII) UNC-43. Importantly, UNC-43 phosphorylated and inhibited the dynamin-related protein (DRP)-1, which was responsible for excessive mitochondrial fragmentation in neurons that lacked sensory-evoked activity. Moreover, enhanced activity in the aged neurons ameliorated mitochondrial fragmentation. These findings provide a detailed description of mitochondrial behavior in aging neurons and identify activity-dependent DRP-1 phosphorylation by CaMKII as a key mechanism in neuronal mitochondrial maintenance.


Asunto(s)
Caenorhabditis elegans/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mitocondrias/fisiología , Neuronas/fisiología , Envejecimiento , Animales , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/fisiología , Longevidad , Neuronas/enzimología , Oxidación-Reducción
20.
J Neurosci ; 36(8): 2543-53, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911699

RESUMEN

Spinal muscular atrophy (SMA) is a motoneuron disease caused by loss or mutation in Survival of Motor Neuron 1 (SMN1) gene. Recent studies have shown that selective restoration of SMN protein in astrocytes partially alleviates pathology in an SMA mouse model, suggesting important roles for astrocytes in SMA. Addressing these underlying mechanisms may provide new therapeutic avenues to fight SMA. Using primary cultures of pure motoneurons or astrocytes from SMNΔ7 (SMA) and wild-type (WT) mice, as well as their mixed and matched cocultures, we characterized the contributions of motoneurons, astrocytes, and their interactions to synapse loss in SMA. In pure motoneuron cultures, SMA motoneurons exhibited normal survival but intrinsic defects in synapse formation and synaptic transmission. In pure astrocyte cultures, SMA astrocytes exhibited defects in calcium homeostasis. In motoneuron-astrocyte contact cocultures, synapse formation and synaptic transmission were significantly reduced when either motoneurons, astrocytes or both were from SMA mice compared with those in WT motoneurons cocultured with WT astrocytes. The reduced synaptic activity is unlikely due to changes in motoneuron excitability. This disruption in synapse formation and synaptic transmission by SMN deficiency was not detected in motoneuron-astrocyte noncontact cocultures. Additionally, we observed a downregulation of Ephrin B2 in SMA astrocytes. These findings suggest that there are both cell autonomous and non-cell-autonomous defects in SMA motoneurons and astrocytes. Defects in contact interactions between SMA motoneurons and astrocytes impair synaptogenesis seen in SMA pathology, possibly due to the disruption of the Ephrin B2 pathway.


Asunto(s)
Astrocitos/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Animales , Astrocitos/patología , Supervivencia Celular/fisiología , Células Cultivadas , Técnicas de Cocultivo , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Médula Espinal/citología , Médula Espinal/metabolismo , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA