Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Biomacromolecules ; 25(4): 2378-2389, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38471518

RESUMEN

We prepared a small library of short peptidomimetics based on 3-pyrrolo-pyrazole carboxylate, a non-coded γ-amino acid, and glycine or alanine. The robust and eco-friendly synthetic approach adopted allows to obtain the dipeptides in two steps from commercial starting materials. This gives the possibility to shape these materials by electrospinning into micro- and nanofibers, in amounts required to be useful for coating surfaces of biomedical relevance. To promote high quality of electrospun fibers, different substitution patterns were evaluated, all for pure peptide fibers, free of any polymer or additive. The best candidate, which affords a homogeneous fibrous matrix, was prepared in larger amounts, and its biocompatibility was verified. This successful work is the first step to develop a new biomaterial able to produce pristine peptide-based nanofibers to be used as helpful component or stand-alone scaffolds for tissue engineering or for the surface modification of medical devices.


Asunto(s)
Nanofibras , Peptidomiméticos , Andamios del Tejido/química , Nanofibras/química , Ingeniería de Tejidos , Péptidos
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569489

RESUMEN

Vascular graft infections are a severe complication in vascular surgery, with a high morbidity and mortality. Prevention and treatment involve the use of antibiotic- or antiseptic-impregnated artificial vascular grafts, but currently, there are no commercially available infection-proof small-diameter vascular grafts (SDVGs). In this work we investigated the antimicrobic activity of two SDVGs prototypes loaded with tobramycin and produced via the electrospinning of drug-doped PLGA (polylactide-co-glycolide) solutions. Differences in rheological and conductivity properties of the polymer solutions resulted in non-identical fibre morphology that deeply influenced the hydration profile and consequently the in vitro cumulative drug release, which was investigated by using a spectrofluorimetric technique. Using DDSolver Excel add-in, modelling of the drug release kinetic was performed to evaluate the release mechanism involved: Prototype 1 showed a sustained and diffusive driven drug release, which allowed for the complete elution of tobramycin within 2 weeks, whereas Prototype 2 resulted in a more extended drug release controlled by both diffusion and matrix relaxation. Time-kill assays performed on S. aureus and E. coli highlighted the influence of burst drug release on the decay rate of bacterial populations, with Prototype 1 being more efficient on both microorganisms. Nevertheless, both prototypes showed good antimicrobic activity over the 5 days of in vitro testing.

3.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430555

RESUMEN

Nowadays, antimicrobial resistance (AMR) represents a challenge for antibiotic therapy, mostly involving Gram-negative bacteria. Among the strategies activated to overcome AMR, the repurposing of already available antimicrobial molecules by encapsulating them in drug delivery systems, such as nanoparticles (NPs) and also engineered NPs, seems to be promising. Tobramycin is a powerful and effective aminoglycoside, approved for complicated infections and reinfections and indicated mainly against Gram-negative bacteria, such as Pseudomonas aeruginosa, Escherichia coli, Proteus, Klebsiella, Enterobacter, Serratia, Providencia, and Citrobacter species. However, the drug presents several side effects, mostly due to dose frequency, and for this reason, it is a good candidate for nanomedicine formulation. This review paper is focused on what has been conducted in the last 20 years for the development of Tobramycin nanosized delivery systems (nanoantibiotics), with critical discussion and comparison. Tobramycin was selected as the antimicrobial drug because it is a wide-spectrum antibiotic that is effective against both Gram-positive and Gram-negative aerobic bacteria, and it is characterized by a fast bactericidal effect, even against multidrug-resistant microorganisms (MDR).


Asunto(s)
Gentamicinas , Tobramicina , Tobramicina/farmacología , Tobramicina/uso terapéutico , Farmacorresistencia Microbiana , Aminoglicósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
4.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887348

RESUMEN

This work focuses on formulating liposomes to be used in isolated kidney dynamic machine perfusion in hypothermic conditions as drug delivery systems to improve preservation of transplantable organs. The need mainly arises from use of kidneys from marginal donors for transplantation that are more exposed to ischemic/reperfusion injury compared to those from standard donors. Two liposome preparation techniques, thin film hydration and microfluidic techniques, are explored for formulating liposomes loaded with two model proteins, myoglobin and bovine serum albumin. The protein-loaded liposomes are characterized for their size by DLS and morphology by TEM. Protein releases from the liposomes are tested in PERF-GEN perfusion fluid, 4 °C, and compared to the in vitro protein release in PBS, 37 °C. Fluorescent liposome uptake is analyzed by fluorescent microscope in vitro on epithelial tubular renal cell cultures and ex vivo on isolated pig kidney in hypothermic perfusion conditions. The results show that microfluidics are a superior technique for obtaining reproducible spherical liposomes with suitable size below 200 nm. Protein encapsulation efficiency is affected by its molecular weight and isoelectric point. Lowering incubation temperature slows down the proteins release; the perfusion fluid significantly affects the release of proteins sensitive to ionic media (such as BSA). Liposomes are taken up by epithelial tubular renal cells in two hours' incubation time.


Asunto(s)
Liposomas , Diálisis Renal , Animales , Técnicas In Vitro , Riñón , Perfusión , Porcinos
5.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948352

RESUMEN

Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA. Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 µm and its internal diameter was 2.61 ± 0.05 mm. The graft's antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.


Asunto(s)
Antibacterianos/administración & dosificación , Prótesis Vascular , Sistemas de Liberación de Medicamentos , Tobramicina/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/instrumentación , Liberación de Fármacos , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/efectos de los fármacos , Tobramicina/química , Tobramicina/farmacología , Injerto Vascular
6.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143536

RESUMEN

Aim of work was to locate a simple, reproducible protocol for uniform seeding and optimal cellularization of biodegradable patch minimizing the risk of structural damages of patch and its contamination in long-term culture. Two seeding procedures are exploited, namely static seeding procedures on biodegradable and biocompatible patches incubated as free floating (floating conditions) or supported by CellCrownTM insert (fixed conditions) and engineered by porcine bone marrow MSCs (p-MSCs). Scaffold prototypes having specific structural features with regard to pore size, pore orientation, porosity, and pore distribution were produced using two different techniques, such as temperature-induced precipitation method and electrospinning technology. The investigation on different prototypes allowed achieving several implementations in terms of cell distribution uniformity, seeding efficiency, and cellularization timing. The cell seeding protocol in stating conditions demonstrated to be the most suitable method, as these conditions successfully improved the cellularization of polymeric patches. Furthermore, the investigation provided interesting information on patches' stability in physiological simulating experimental conditions. Considering the in vitro results, it can be stated that the in vitro protocol proposed for patches cellularization is suitable to achieve homogeneous and complete cellularizations of patch. Moreover, the protocol turned out to be simple, repeatable, and reproducible.


Asunto(s)
Materiales Biocompatibles/química , Esófago/patología , Esófago/cirugía , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Animales , Células de la Médula Ósea/citología , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Microscopía Electrónica de Rastreo , Poliésteres/química , Porosidad , Porcinos , Temperatura , Andamios del Tejido/química
7.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31238568

RESUMEN

An electrospinning process was optimized to produce fibers of micrometric size with different combinations of polymeric and surfactant materials to promote the dissolution rate of an insoluble drug: firocoxib. Scanning Electron Microscopy (SEM) showed that only some combinations of the proposed carrier systems allowed the production of suitable fibers and further fine optimization of the technique is also needed to load the drug. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) suggest that the drug is in an amorphous state in the final product. Drug amorphization, the fine dispersion of the active in the carriers, and the large surface area exposed to water interaction obtained through the electrospinning process can explain the remarkable improvement in the dissolution performance of firocoxib from the final product developed.


Asunto(s)
4-Butirolactona/análogos & derivados , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/química , Portadores de Fármacos , Nanofibras , Polímeros , Sulfonas/administración & dosificación , Sulfonas/química , Tensoactivos , 4-Butirolactona/administración & dosificación , 4-Butirolactona/química , Portadores de Fármacos/química , Nanofibras/química , Nanofibras/ultraestructura , Polímeros/química , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Tensoactivos/química , Termodinámica
8.
Int J Mol Sci ; 20(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835390

RESUMEN

Chitosan nanoparticles (CS NPs) showed promising results in drug, vaccine and gene delivery for the treatment of various diseases. The considerable attention towards CS was owning to its outstanding biological properties, however, the main challenge in the application of CS NPs was faced during their size-controlled synthesis. Herein, ionic gelation reaction between CS and sodium tripolyphosphate (TPP), a widely used and safe CS cross-linker for biomedical application, was exploited by a microfluidic approach based on a staggered herringbone micromixer (SHM) for the synthesis of TPP cross-linked CS NPs (CS/TPP NPs). Screening design of experiments was applied to systematically evaluate the main process and formulative factors affecting CS/TPP NPs physical properties (mean size and size distribution). Effectiveness of the SHM-assisted manufacturing process was confirmed by the preliminary evaluation of the biological performance of the optimized CS/TPP NPs that were internalized in the cytosol of human mesenchymal stem cells through clathrin-mediated mechanism. Curcumin, selected as a challenging model drug, was successfully loaded into CS/TPP NPs (EE% > 70%) and slowly released up to 48 h via the diffusion mechanism. Finally, the comparison with the conventional bulk mixing method corroborated the efficacy of the microfluidics-assisted method due to the precise control of mixing at microscales.


Asunto(s)
Quitosano , Curcumina , Portadores de Fármacos , Dispositivos Laboratorio en un Chip , Células Madre Mesenquimatosas/metabolismo , Nanopartículas , Polifosfatos , Quitosano/química , Quitosano/farmacocinética , Quitosano/farmacología , Curcumina/química , Curcumina/farmacocinética , Curcumina/farmacología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Humanos , Nanopartículas/química , Nanopartículas/uso terapéutico , Polifosfatos/química , Polifosfatos/farmacocinética , Polifosfatos/farmacología
9.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087241

RESUMEN

Bronchiolitis obliterans syndrome (BOS), caused by lung allograft-derived mesenchymal cells' abnormal proliferation and extracellular matrix deposition, is the main cause of lung allograft rejection. In this study, a mild one-step ionotropic gelation method was set up to nanoencapsulate the everolimus, a key molecule in allograft organ rejection prevention, into hyaluronic acid-decorated chitosan-based nanoparticles. Rationale was the selective delivery of everolimus into lung allograft-derived mesenchymal cells; these cells are characterized by the CD44-overexpressing feature, and hyaluronic acid has proven to be a natural selective CD44-targeting moiety. The optimal process conditions were established by a design of experiment approach (full factorial design) aiming at the control of the nanoparticle size (≤200 nm), minimizing the size polydispersity (PDI 0.171 ± 0.04), and at the negative ζ potential maximization (-30.9 mV). The everolimus was successfully loaded into hyaluronic acid-decorated chitosan-based nanoparticles (95.94 ± 13.68 µg/100 mg nanoparticles) and in vitro released in 24 h. The hyaluronic acid decoration on the nanoparticles provided targetability to CD44-overexpressing mesenchymal cells isolated from bronchoalveolar lavage of BOS-affected patients. The mesenchymal cells' growth tests along with the nanoparticles uptake studies, at 37 °C and 4 °C, respectively, demonstrated a clear improvement of everolimus inhibitory activity when it is encapsulated in hyaluronic acid-decorated chitosan-based nanoparticles, ascribable to their active uptake mechanism.


Asunto(s)
Antineoplásicos/administración & dosificación , Quitosano/análogos & derivados , Sistemas de Liberación de Medicamentos , Everolimus/administración & dosificación , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/análogos & derivados , Nanopartículas/química , Adulto , Antineoplásicos/farmacocinética , Línea Celular , Everolimus/farmacocinética , Fibroblastos/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/ultraestructura
10.
Int J Mol Sci ; 19(8)2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082640

RESUMEN

Selectively targeted nanoscale drug delivery systems have recently emerged as promising intravenously therapeutic option for most chronic joint diseases. Here, a newly synthetized dodecapeptide (GE11)-polylactide-co-glycolide (PLGA)-based conjugate was used to prepare smart nanoparticles (NPs) intended for intra-articular administration and for selectively targeting Epidermal Growth Factor Receptor (EGFR). GE11-PLGA conjugate-based NPs are specifically uptaken by EGFR-overexpressed fibroblast; such as synoviocytes; which are the primarily cellular component involved in the development of destructive joint inflammation. The selective uptake could help to tune drug effectiveness in joints and to decrease local and systemic side effects. Dexamethasone (DXM) is a glucorticoid drug commonly used in joint disease treatment for both systemic and local administration route. In the present research; DXM was efficiently loaded into GE11-PLGA conjugate-based NPs through an eco-friendly nanoprecipitation method set up for this purpose. DXM loaded GE11-PLGA conjugate-based NPs revealed satisfactory ex vivo cytocompatibility; with proper size (≤150 nm) and good dimensional stability in synovial fluid. Intra-articular formulation was developed embedding DXM loaded GE11-PLGA conjugate-based NPs into thermosetting chitosan-based hydrogel; forming a biocompatible composite hydrogel able to quickly turn from liquid state into gel state at physiological temperature; within 15 min. Moreover; the use of thermosetting chitosan-based hydrogel extends the local release of active agent; DXM.


Asunto(s)
Dexametasona/química , Ácido Láctico/química , Nanopartículas/química , Péptidos/química , Ácido Poliglicólico/química , Animales , Quitosano/química , Receptores ErbB/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
11.
J Microencapsul ; 33(8): 750-762, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27845595

RESUMEN

The aim of this work was the assessment of the "in vivo" immune response of a poly(lactide-co-glycolide)-based nanoparticulate adjuvant for a sub-unit vaccine, namely, a purified recombinant collagen-binding bacterial adhesion fragment (CNA19), against Staphylococcus aureus-mediated infections. "In vivo" immunogenicity studies were performed on mice: immunisation protocols encompassed subcutaneous and intranasal administration of CNA19 formulated as nanoparticles (NPs) and furthermore, CNA19-loaded NPs formulated in a set-up thermosetting chitosan-ß-glycerolphosphate (chitosan-ß-GP) solution for intranasal route in order to extend antigen exposure to nasal mucosa. CNA19 loaded NPs (mean size of about 195 nm, 9.04 ± 0.37µg/mg as CNA19 loading capacity) confirmed as suitable vaccine for subcutaneous administration with a more pronounced adjuvant effect (about 3-fold higher) with respect to aluminium, recognised as "reference" adjuvant. CNA19 loaded NPs formulated in an optimised thermogelling chitosan-ß-GP solution showed promising results for eliciting an effective humoral response and a good chance as intranasal boosting dose.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/administración & dosificación , Staphylococcus aureus/inmunología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Administración Intranasal , Animales , Femenino , Inmunidad Humoral , Ratones , Ratones Endogámicos BALB C , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Infecciones Estafilocócicas/inmunología , Vacunas Estafilocócicas/farmacología , Vacunas Estafilocócicas/uso terapéutico , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/farmacología , Vacunas Sintéticas/uso terapéutico
12.
Gels ; 10(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38667682

RESUMEN

Supramolecular gels were developed by taking advantage of an assembly of small dipeptides containing pyrrolo-pyrazole scaffolds. The dipeptides were prepared through a robust and ecofriendly synthetic approach from the commercially available starting materials of diazoalkanes and maleimides. By playing with the functionalization of the scaffold, the choice of the natural amino acid, and the stereochemistry, we were able to obtain phase-selective gels. In particular, one peptidomimetic showed gelation ability and thermoreversibility in aromatic solvents at very low concentrations. Rheology tests showed a typical viscoelastic solid profile, indicating the formation of strong gels that were stable under high mechanical deformation. NMR studies were performed, allowing us to determine the conformational and stereochemical features at the base of the supramolecular interactions.

13.
Pharmaceutics ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675169

RESUMEN

Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, precise and reproducible nanoparticle attributes. The present work aims to assess the effect of different micromixer geometries on the manufacturing of lipid nanocarriers taking into account the influence on the mixing efficiency by changing the fluid-fluid interface and indeed the mass transfer. Since the geometry of the adopted micromixer varies from those already published, a Design of Experiment (DoE) was necessary to identify the operating (total flow, flow rate ratio) and formulation (lipid concentration, lipid molar ratios) parameters affecting the nanocarrier quality. The suitable application of the platform was investigated by producing neutral, stealth and cationic liposomes, using DaunoXome®, Myocet®, Onivyde® and Onpattro® as the benchmark. The effect of condensing lipid (DOTAP, 3-10-20 mol%), coating lipids (DSPE-PEG550 and DSPE-PEG2000), as well as structural lipids (DSPC, eggPC) was pointed out. A very satisfactory encapsulation efficiency, always higher than 70%, was successfully obtained for model biomolecules (myoglobin, short and long nucleic acids).

14.
Expert Opin Drug Deliv ; 20(4): 471-487, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36896650

RESUMEN

INTRODUCTION: Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED: This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION: Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.


Asunto(s)
Enfermedades Pulmonares , Nanopartículas , Humanos , Polvos , Sistemas CRISPR-Cas , Administración por Inhalación , Enfermedades Pulmonares/tratamiento farmacológico , Pulmón , Inhaladores de Polvo Seco , Tamaño de la Partícula
15.
Eur J Pharm Biopharm ; 188: 170-181, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37196873

RESUMEN

In recent decades, biotechnological drugs have emerged as relevant therapeutic tools. However, therapeutic molecules can exert their activity only if properly formulated and delivered into the body. In this regard, nano-sized drug delivery systems have been shown to provide protection, stability, and controlled release of payloads, increasing their therapeutic efficacy. In this work, a microfluidic mixing technique for the preparation of chitosan-based nanoparticles was established with the capability of easily exchanging macromolecular biological cargos such as the model protein ß-Galactosidase, mRNA, and siRNA. The nanoparticles obtained showed hydrodynamic diameters ranging from 75 nm to 105 nm, low polydispersity of 0.15 to 0.22 and positive zeta potentials of 6 mV to 17 mV. All payloads were efficiently encapsulated (>80 %) and the well-known cytocompatibility of chitosan-based nanoparticles was confirmed. Cell culture studies demonstrated increased cellular internalization of loaded nano-formulations compared to free molecules as well as successful gene silencing with nano-formulated siRNA, suggesting the ability of these nanoparticles to escape the endosome.


Asunto(s)
Quitosano , Nanopartículas , Microfluídica , Sustancias Macromoleculares , ARN Interferente Pequeño/genética , Tamaño de la Partícula
16.
Pharmaceutics ; 15(3)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36986609

RESUMEN

Hypertrophic scars (HTSs) are aberrant structures that develop where skin is injured complexly and represent the result of a chronic inflammation as a healing response. To date, there is no satisfactory prevention option for HTSs, which is due to the complexity of multiple mechanisms behind the formation of these structures. The present work aimed to propose Biofiber (Biodegradable fiber), an advanced textured electrospun dressing, as a suitable solution for HTS formation in complex wounds. Biofiber has been designed as a 3-day long-term treatment to protect the healing environment and enhance wound care practices. Its textured matrix consists of homogeneous and well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) electrospun fibers (size 3.825 ± 1.12 µm) loaded with Naringin (NG, 2.0% w/w), a natural antifibrotic agent. The structural units contribute to achieve an optimal fluid handling capacity demonstrated through a moderate hydrophobic wettability behavior (109.3 ± 2.3°), and a suitable balance between absorbency (389.8 ± 58.16%) and moisture vapor transmission rate (MVTR, 2645 ± 60.43 g/m2 day). The flexibility and conformability of Biofiber to the body surfaces is due to its innovative circular texture, that also allow it to obtain finer mechanical properties after 72 h in contact with Simulated Wound Fluid (SWF), with an elongation of 352.6 ± 36.10%, and a great tenacity (0.25 ± 0.03 Mpa). The ancillary action of NG results in a prolonged anti-fibrotic effect on Normal Human Dermal Fibroblasts (NHDF), through the controlled release of NG for 3 days. The prophylactic action was highlighted at day 3 with the down regulation of the major factors involved in the fibrotic process: Transforming Growth Factor ß1 (TGF-ß1), Collagen Type 1 alpha 1 chain (COL1A1), and α-smooth muscle actin (α-SMA). No significant anti-fibrotic effect has been demonstrated on Hypertrophic Human Fibroblasts derived from scars (HSF), proving the potential of Biofiber to minimize HTSs in the process of early wound healing as a prophylactic therapy.

17.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896289

RESUMEN

Hypertrophic scars (HTSs) are pathological structures resulting from chronic inflammation during the wound healing process, particularly in complex injuries like burns. The aim of this work is to propose Biofiber PF (biodegradable fiber loaded with Pirfenidone 1.5 w/w), an electrospun advanced dressing, as a solution for HTSs treatment in complex wounds. Biofiber has a 3-day antifibrotic action to modulate the fibrotic process and enhance physiological healing. Its electrospun structure consists of regular well-interconnected Poly-L-lactide-co-poly-ε-caprolactone (PLA-PCL) fibers (size 2.83 ± 0.46 µm) loaded with Pirfenidone (PF, 1.5% w/w), an antifibrotic agent. The textured matrix promotes the exudate balance through mild hydrophobic wettability behavior (109.3 ± 2.3°), and an appropriate equilibrium between the absorbency % (610.2 ± 171.54%) and the moisture vapor transmission rate (0.027 ± 0.036 g/min). Through its finer mechanical properties, Biofiber PF is conformable to the wound area, promoting movement and tissue oxygenation. These features also enhance the excellent elongation (>500%) and tenacity, both in dry and wet conditions. The ancillary antifibrotic action of PF on hypertrophic scar fibroblast (HSF) for 3 days downregulates the cell proliferation over time and modulates the gene expression of transforming growth factor ß1 (TGF-ß1) and α-smooth muscle actin (α-SMA) at 48-72 h. After 6 days of treatment, a decrement of α-SMA protein levels was detected, proving the potential of biofiber as a valid therapeutic treatment for HTSs in an established wound healing process.

18.
Pharmaceutics ; 15(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38140077

RESUMEN

The design, production, and characterisation of tissue-engineered scaffolds made of polylactic-co-glycolic acid (PLGA), polycaprolactone (PCL) and their blends obtained through electrospinning (ES) or solvent casting/particulate leaching (SC) manufacturing techniques are presented here. The polymer blend composition was chosen to always obtain a prevalence of one of the two polymers, in order to investigate the contribution of the less concentrated polymer on the scaffolds' properties. Physical-chemical characterization of ES scaffolds demonstrated that tailoring of fibre diameter and Young modulus (YM) was possible by controlling PCL concentration in PLGA-based blends, increasing the fibre diameter from 0.6 to 1.0 µm and reducing the YM from about 22 to 9 MPa. SC scaffolds showed a "bubble-like" topography, caused by the porogen spherical particles, which is responsible for decreasing the contact angles from about 110° in ES scaffolds to about 74° in SC specimens. Nevertheless, due to phase separation within the blend, solvent-casted samples displayed less reproducible properties. Furthermore, ES samples were characterised by 10-fold higher water uptake than SC scaffolds. The scaffolds suitability as iPSCs culturing support was evaluated using XTT assay, and pluripotency and integrin gene expression were investigated using RT-PCR and RT-qPCR. Thanks to their higher wettability and appropriate YM, SC scaffolds seemed to be superior in ensuring high cell viability over 5 days, whereas the ability to maintain iPSCs pluripotency status was found to be similar for ES and SC scaffolds.

19.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056160

RESUMEN

Nanotechnology offers advanced biomedical tools for diagnosis and drug delivery, stressing the value of investigating the mechanisms by which nanocarriers interact with the biological environment. Herein, the cellular response to CD44-targeted nanoparticles (NPs) was investigated. CD44, the main hyaluronic acid (HA) receptor, is widely exploited as a target for therapeutic purposes. HA NPs were produced by microfluidic platform starting from HA with different molecular weights (Mw, 280, 540, 820 kDa) by polyelectrolyte complexation with chitosan (CS). Thanks to microfluidic technology, HA/CS NPs with the same physical features were produced, and only the effects of HA Mw on CD44-overexpressing cells (human mesenchymal stem cells, hMSCs) were studied. This work provides evidence of the HA/CS NPs biocompatibility regardless the HA Mw and reveals the effect of low Mw HA in improving the cell proliferation. Special attention was paid to the endocytic mechanisms used by HA/CS NPs to enter hMSCs. The results show the notable role of CD44 and the pronounced effect of HA Mw in the NPs' internalization. HA/CS NPs uptake occurs via different endocytic pathways simultaneously, and most notably, NPs with 280 kDa HA were internalized by clathrin-mediated endocytosis. Instead, NPs with 820 kDa HA revealed a greater contribution of caveolae and cytoskeleton components.

20.
Int J Pharm ; 629: 122368, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36343906

RESUMEN

Nanomedicine consists in the application of nanotechnology in medicine to revolutionize the healthcare sector through transformative new diagnostic and therapeutic tools. In this field, nanostructures or nanocarriers (i.e., nanoparticles) are extensively used as a drug delivery system. Despite the well-defined profits offered by nanomedicines based on poly (lactic-co-glycolic acid) (PLGA), the major barriers hampering the launch of a nanoparticles-based product on the market are batch-to-batch variations and its lack of reproducibility from the benchtop to an industrial scale production. Currently, microfluidics technology has emerged as potential tool to achieve a continuous manufacturing with a precise control over fluids mixing and particles quality attributes. This work aims at defining a tailored strategy to produce PLGA NPs, exploiting a new microfluidic device. Moreover, Design of Experiments (DoE) and computational fluid dynamics approaches were exploited to understand the main process parameters and material attributes affecting the quality of the final product as well as the NPs manufacturing process. Finally, the ability to incorporate a drug into the PLGA nanoparticles was investigated by using Curcumin as model payload reaching encapsulation efficiency in the rank 28-44%. This paper is proposed as useful guide for the preparation of PLGA NPs by microfluidic technique.


Asunto(s)
Microfluídica , Nanopartículas , Microfluídica/métodos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Reproducibilidad de los Resultados , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Tamaño de la Partícula , Portadores de Fármacos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA