Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurosci ; 40(25): 4813-4823, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32414784

RESUMEN

During sleep, neurons in the thalamic reticular nucleus (TRN) participate in distinct types of oscillatory activity. While the reciprocal synaptic circuits between TRN and sensory relay nuclei are known to underlie the generation of sleep spindles, the mechanisms regulating slow (<1 Hz) forms of thalamic oscillations are not well understood. Under in vitro conditions, TRN neurons can generate slow oscillations in a cell-intrinsic manner, with postsynaptic Group 1 metabotropic glutamate receptor activation triggering long-lasting plateau potentials thought to be mediated by both T-type Ca2+ currents and Ca2+-activated nonselective cation currents (ICAN). However, the identity of ICAN and the possible contribution of thalamic circuits to slow rhythmic activity remain unclear. Using thalamic slices derived from adult mice of either sex, we recorded slow forms of rhythmic activity in TRN neurons, which were driven by fast glutamatergic thalamoreticular inputs but did not require postsynaptic Group 1 metabotropic glutamate receptor activation. For a significant fraction of TRN neurons, synaptic inputs or brief depolarizing current steps led to long-lasting plateau potentials and persistent firing (PF), and in turn, resulted in sustained synaptic inhibition in postsynaptic relay neurons of the ventrobasal thalamus (VB). Pharmacological approachesindicated that plateau potentials were triggered by Ca2+ influx through T-type Ca2+ channels and mediated by Ca2+- and voltage-dependent transient receptor potential melastatin 4 (TRPM4) channels. Together, our results suggest that thalamic circuits can generate slow oscillatory activity, mediated by an interplay of TRN-VB synaptic circuits that generate rhythmicity and TRN cell-intrinsic mechanisms that control PF and oscillation frequency.SIGNIFICANCE STATEMENT Slow forms of thalamocortical rhythmic activity are thought to be essential for memory consolidation during sleep and the efficient removal of potentially toxic metabolites. In vivo, thalamic slow oscillations are regulated by strong bidirectional synaptic pathways linking neocortex and thalamus. Therefore, in vitro studies in the isolated thalamus offer important insights about the ability of individual neurons and local circuits to generate different forms of rhythmic activity. We found that circuits formed by GABAergic neurons in the thalamic reticular nucleus and glutamatergic relay neurons in the ventrobasal thalamus generated slow oscillatory activity, which was accompanied by persistent firing in thalamic reticular nucleus neurons. Our results identify both cell-intrinsic and synaptic mechanisms that mediate slow forms of rhythmic activity in thalamic circuits.


Asunto(s)
Neuronas GABAérgicas/fisiología , Núcleos Talámicos Intralaminares/fisiología , Canales Catiónicos TRPM/metabolismo , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Sueño/fisiología
2.
J Neurosci ; 33(16): 7020-6, 2013 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23595759

RESUMEN

BACE1 is the rate-limiting enzyme that cleaves amyloid precursor protein (APP) to produce the amyloid ß peptides that accumulate in Alzheimer's disease (AD). BACE1, which is elevated in AD patients and APP transgenic mice, also cleaves the ß2-subunit of voltage-gated sodium channels (Navß2). Although increased BACE1 levels are associated with Navß2 cleavage in AD patients, whether Navß2 cleavage occurs in APP mice had not yet been examined. Such a finding would be of interest because of its potential impact on neuronal activity: previous studies demonstrated that BACE1-overexpressing mice exhibit excessive cleavage of Navß2 and reduced sodium current density, but the phenotype associated with loss of function mutations in either Navß-subunits or pore-forming α-subunits is epilepsy. Because mounting evidence suggests that epileptiform activity may play an important role in the development of AD-related cognitive deficits, we examined whether enhanced cleavage of Navß2 occurs in APP transgenic mice, and whether it is associated with aberrant neuronal activity and cognitive deficits. We found increased levels of BACE1 expression and Navß2 cleavage fragments in cortical lysates from APP transgenic mice, as well as associated alterations in Nav1.1α expression and localization. Both pyramidal neurons and inhibitory interneurons exhibited evidence of increased Navß2 cleavage. Moreover, the magnitude of alterations in sodium channel subunits was associated with aberrant EEG activity and impairments in the Morris water maze. Together, these results suggest that altered processing of voltage-gated sodium channels may contribute to aberrant neuronal activity and cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Neuronas/metabolismo , Canales de Sodio/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Biotinilación , Modelos Animales de Enfermedad , Electroencefalografía , Regulación de la Expresión Génica/genética , Glutamato Descarboxilasa/metabolismo , Humanos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuropéptido Y/genética , Neuropéptido Y/metabolismo
3.
J Neurosci Res ; 92(11): 1434-45, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24964253

RESUMEN

Traumatic brain injury (TBI) involves diffuse axonal injury and induces subtle but persistent changes in brain tissue and function and poses challenges for early detection of neurological injury. The present study uses an automated behavioral analysis system to assess alterations in rodent behavior in the subacute phase in a preclinical mouse model of TBI, controlled cortical impact (CCI) injury. In the first few weeks following CCI, mice demonstrated normal exploratory behaviors and other typical home-cage behaviors. However, beginning 4 weeks post-injury, CCI mice developed disruptions in sleep-wake patterns, including an increased number of awakenings from sleep. Such impaired sleep maintenance was accompanied by an increased latency to reach peak sleep in CCI mice. These sleep disruptions implicate involvement of the thalamocortical network, the activity of which must be tightly regulated to control sleep maintenance. After injury, there was an increase in reactive microglia in thalamic regions as well as delayed reactive astrocytosis that was evident in the thalamic reticular nucleus, which preceded the development of sleep disruptions. These data suggest that cortical injury may trigger inflammatory responses in deeper neuroanatomical structures, including the thalamic reticular nucleus. Such engagement of the thalamus may perturb the thalamocortical network that regulates sleep/awake patterns and contribute to sleep disruptions observed in this model as well as those documented in patients with TBI.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/patología , Gliosis/etiología , Trastornos de la Transición Sueño-Vigilia/etiología , Tálamo/patología , Animales , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Conducta Alimentaria , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/metabolismo , Aseo Animal , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo
4.
Front Neurosci ; 18: 1428736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114484

RESUMEN

The pathogenesis of Parkinson's disease (PD) is characterized by progressive deposition of alpha-synuclein (α-syn) aggregates in dopaminergic neurons and neuroinflammation. Noninvasive in vivo imaging of α-syn aggregate accumulation and neuroinflammation can elicit the underlying mechanisms involved in disease progression and facilitate the development of effective treatment as well as disease diagnosis and prognosis. Here we present a novel approach to simultaneously profile α-syn aggregation and reactive microgliosis in vivo, by targeting oligomeric α-syn in cerebrospinal fluid with nanoparticle bearing a magnetic resonance imaging (MRI), contrast payload. In this proof-of-concept report we demonstrate, in vitro, that microglia and neuroblastoma cell lines internalize agglomerates formed by cross-linking the nanoparticles with oligomeric α-syn. Delayed in vivo MRI scans following intravenous administration of the nanoparticles in the M83 α-syn transgenic mouse line show statistically significant MR signal enhancement in test mice versus controls. The in vivo data were validated by ex-vivo immunohistochemical analysis which show strong correlation between in vivo MRI signal enhancement, Lewy pathology distribution, and microglia activity in the treated brain tissue. Furthermore, neuronal and microglial cells in brain tissue from treated mice display strong cytosolic signal originating from the nanoparticles, attributed to in vivo cell uptake of nanoparticle/oligomeric α-syn agglomerates.

5.
Prog Neurobiol ; 237: 102612, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642602

RESUMEN

Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.


Asunto(s)
Precursor de Proteína beta-Amiloide , Giro Dentado , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos , Convulsiones , Animales , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neuroprotección/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Convulsiones/genética , Convulsiones/metabolismo
6.
Hippocampus ; 23(8): 649-55, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23640815

RESUMEN

Granule cells (GCs) of the dentate gyrus (DG) are considered to be quiescent--they rarely fire action potentials. In contrast, the other glutamatergic cell type in the DG, hilar mossy cells (MCs) often have a high level of spontaneous activity based on recordings in hippocampal slices. MCs project to GCs, so activity in MCs could play an important role in activating GCs. Therefore, we investigated whether MCs were active under basal conditions in vivo, using the immediate early gene c-fos as a tool. We hypothesized that MCs would exhibit c-fos expression even if rats were examined randomly, under normal housing conditions. Therefore, adult male rats were perfused shortly after removal from their home cage and transfer to the laboratory. Remarkably, most c-fos immunoreactivity (ir) was in the hilus, especially temporal hippocampus. C-fos-ir hilar cells co-expressed GluR2/3, suggesting that they were MCs. C-fos-ir MCs were robust even when the animal was habituated to the investigator and laboratory where they were euthanized. However, c-fos-ir in dorsal MCs was reduced under these circumstances, suggesting that ventral and dorsal MCs are functionally distinct. Interestingly, there was an inverse relationship between MC and GC layer c-fos expression, with little c-fos expression in the GC layer in ventral sections where MC expression was strong, and the opposite in dorsal hippocampus. The results support the hypothesis that a subset of hilar MCs are spontaneously active in vivo and provide other DG neurons with tonic depolarizing input.


Asunto(s)
Giro Dentado/citología , Fibras Musgosas del Hipocampo/fisiología , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Análisis de Varianza , Animales , Recuento de Células , Masculino , Neuropéptido Y/metabolismo , Parvalbúminas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo
7.
Epilepsy Behav ; 26(3): 343-51, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23321057

RESUMEN

Seizures in patients with Alzheimer's disease (AD) have been examined by many investigators over the last several decades, and there are diverse opinions about their potential relevance to AD pathophysiology. Some studies suggest that seizures appear to be a fairly uncommon co-morbidity, whereas other studies report a higher incidence of seizures in patients with AD. It was previously thought that seizures play a minor role in AD pathophysiology because of their low frequency, and also because they may only be noticed during late stages of AD, suggesting that seizures are likely to be a consequence of neurodegeneration rather than a contributing factor. However, clinical reports indicate that seizures can occur early in the emergence of AD symptoms, particularly in familial AD. In this case, seizures may be an integral part of the emerging pathophysiology. This view has been supported by evidence of recurrent spontaneous seizures in transgenic mouse models of AD in which familial AD is simulated. Additional data from transgenic animals suggest that there may be a much closer relationship between seizures and AD than previously considered. There is also evidence that seizures facilitate production of amyloid ß (Aß) and can cause impairments in cognition and behavior in both animals and humans. However, whether seizures play a role in the early stages of AD pathogenesis is still debated. Therefore, it is timely to review the similarities and differences between AD and epilepsy, as well as data suggesting that seizures may contribute to cognitive and behavioral dysfunction in AD. Here we focus on AD and temporal lobe epilepsy (TLE), a particular type of epilepsy that involves the temporal lobe, a region that influences behavior and is critical to memory. We also consider potential neurobiological mechanisms that support the view that the causes of seizures in TLE may be related to the causes of cognitive dysfunction in AD. We suggest that similar underlying mechanisms may exist for at least some of the aspects of AD that are also found in TLE.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Trastornos del Conocimiento/etiología , Epilepsia/complicaciones , Trastornos Mentales/etiología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones
8.
Front Neurol ; 14: 1331194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274865

RESUMEN

Epilepsy is a chronic neurological disorder characterized by recurrent seizures, and is often comorbid with other neurological and neurodegenerative diseases, such as Alzheimer's disease (AD). Patients with recurrent seizures often present with cognitive impairment. However, it is unclear how seizures, even when infrequent, produce long-lasting deficits in cognition. One mechanism may be seizure-induced expression of ΔFosB, a long-lived transcription factor that persistently regulates expression of plasticity-related genes and drives cognitive dysfunction. We previously found that, compared with cognitively-intact subjects, the activity-dependent expression of ΔFosB in the hippocampal dentate gyrus (DG) was increased in individuals with mild cognitive impairment (MCI) and in individuals with AD. In MCI patients, higher ΔFosB expression corresponded to lower Mini-Mental State Examination scores. Surgically resected DG tissue from patients with temporal lobe epilepsy also showed robust ΔFosB expression; however, it is unclear whether ΔFosB expression also corresponds to cognitive dysfunction in non-AD-related epilepsy. To test whether DG ΔFosB expression is indicative of cognitive impairment in epilepsies with different etiologies, we assessed ΔFosB expression in surgically-resected hippocampal tissue from 33 patients with childhood epilepsies who had undergone Wechsler Intelligence Scale for Children (WISC) testing prior to surgery. We found that ΔFosB expression is inversely correlated with Full-Scale Intelligence Quotient (FSIQ) in patients with mild to severe intellectual disability (FSIQ < 85). Our data indicate that ΔFosB expression corresponds to cognitive impairment in epilepsies with different etiologies, supporting the hypothesis that ΔFosB may epigenetically regulate gene expression and impair cognition across a wide range of epilepsy syndromes.

9.
Front Mol Neurosci ; 16: 1324922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283700

RESUMEN

Activity induced transcription factor ΔFosB plays a key role in different CNS disorders including epilepsy, Alzheimer's disease, and addiction. Recent findings suggest that ΔFosB drives cognitive deficits in epilepsy and together with the emergence of small molecule inhibitors of ΔFosB activity makes it an interesting therapeutic target. However, whether ΔFosB contributes to pathophysiology or provides protection in drug-resistant epilepsy is still unclear. In this study, ΔFosB was specifically downregulated by delivering AAV-shRNA into the hippocampus of chronically epileptic mice using the drug-resistant pilocarpine model of mesial temporal epilepsy (mTLE). Immunohistochemistry analyses showed that prolonged downregulation of ΔFosB led to exacerbation of neuroinflammatory markers of astrogliosis and microgliosis, loss of mossy fibers, and hippocampal granule cell dispersion. Furthermore, prolonged inhibition of ΔFosB using a ΔJunD construct to block ΔFosB signaling in a mouse model of Alzheimer's disease, that exhibits spontaneous recurrent seizures, led to similar findings, with increased neuroinflammation and decreased NPY expression in mossy fibers. Together, these data suggest that seizure-induced ΔFosB, regardless of seizure-etiology, is part of a homeostatic mechanism that protects the epileptic brain from further deterioration.

10.
J Neurosci ; 31(2): 700-11, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21228179

RESUMEN

Alzheimer's disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-ß peptide (Aß) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aß. However, the mechanisms by which Aß, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aß and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aß and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aß, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/fisiología , Trastornos del Conocimiento/fisiopatología , Red Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-fyn/fisiología , Sinapsis/fisiología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/psicología , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Hipocampo/fisiopatología , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Plasticidad Neuronal , Convulsiones/metabolismo , Convulsiones/fisiopatología , Especificidad de la Especie , Transmisión Sináptica , Proteínas tau/genética
11.
Nature ; 443(7113): 768-73, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17051202

RESUMEN

Patients with Alzheimer's disease or other neurodegenerative disorders show remarkable fluctuations in neurological functions, even during the same day. These fluctuations cannot be caused by sudden loss or gain of nerve cells. Instead, it is likely that they reflect variations in the activity of neural networks and, perhaps, chronic intoxication by abnormal proteins that the brain is temporarily able to overcome. These ideas have far-reaching therapeutic implications.


Asunto(s)
Enfermedades Neurodegenerativas/fisiopatología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Plasticidad Neuronal , Sinapsis/metabolismo
12.
Front Aging Neurosci ; 14: 811481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615594

RESUMEN

HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.

13.
Neuron ; 55(5): 697-711, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17785178

RESUMEN

Neural network dysfunction may play an important role in Alzheimer's disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related proteins in the dentate gyrus, a region critically involved in learning and memory. Here, we report that hAPP mice have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks, which is associated with GABAergic sprouting, enhanced synaptic inhibition, and synaptic plasticity deficits in the dentate gyrus. Many Abeta-induced neuronal alterations could be simulated in nontransgenic mice by excitotoxin challenge and prevented in hAPP mice by blocking overexcitation. Aberrant increases in network excitability and compensatory inhibitory mechanisms in the hippocampus may contribute to Abeta-induced neurological deficits in hAPP mice and, possibly, also in humans with AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Trastornos del Conocimiento/fisiopatología , Giro Dentado/fisiopatología , Epilepsia/fisiopatología , Inhibición Neural/genética , Vías Nerviosas/fisiopatología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Giro Dentado/metabolismo , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Neocórtex/metabolismo , Neocórtex/fisiopatología , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Neurotoxinas/farmacología , Transmisión Sináptica/genética , Ácido gamma-Aminobutírico/metabolismo
14.
Sci Transl Med ; 13(618): eabh4284, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731016

RESUMEN

Sleep disruptions promote increases of amyloid ß (Aß) and tau in the brain and increase Alzheimer's disease (AD) risk, but the precise mechanisms that give rise to sleep disturbances have yet to be defined. The thalamic reticular nucleus (TRN) is essential for sleep maintenance and for the regulation of slow-wave sleep (SWS). We examined the TRN in transgenic mice that express mutant human amyloid precursor protein (APP) and found reduced neuronal activity, increased sleep fragmentation, and decreased SWS time as compared to nontransgenic littermates. Selective activation of the TRN using excitatory DREADDs restored sleep maintenance, increased time in SWS, and reduced amyloid plaque load in both hippocampus and cortex. Our findings suggest that the TRN may play a major role in symptoms associated with AD. Enhancing TRN activity might be a promising therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Sueño
15.
Nat Neurosci ; 9(7): 887-95, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16732277

RESUMEN

Learning and memory depend critically on long-term synaptic plasticity, which requires neuronal gene expression. In the prevailing view, AMPA receptors mediate fast excitatory synaptic transmission and effect short-term plasticity, but they do not directly regulate neuronal gene expression. By studying regulation of Arc, a gene required for long-term plasticity, we uncovered a new role for AMPA receptors in neuronal gene expression. Spontaneous synaptic activity or activity induced by brain-derived neurotrophic factor (BDNF) elicited Arc expression in cultures of rat cortical neurons and in organotypic brain slices. Notably, inhibiting AMPA receptors strongly potentiated activity-dependent Arc expression. We found that AMPA receptors negatively regulate Arc transcription, but not translation or stability, through a mechanism involving a pertussis toxin-sensitive G protein. These results provide insights into the activity-dependent mechanisms of Arc expression and suggest that, in addition to effecting short-term plasticity, AMPA receptors regulate genes involved in long-term plasticity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Expresión Génica/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/genética , Receptores AMPA/fisiología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Northern Blotting/métodos , Western Blotting/métodos , Factor Neurotrófico Derivado del Encéfalo/farmacología , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Proteínas del Citoesqueleto/genética , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Expresión Génica/efectos de los fármacos , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Técnicas In Vitro , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Transfección/métodos
16.
PLoS One ; 15(5): e0232241, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407421

RESUMEN

Under physiologic conditions, the dentate gyrus (DG) exhibits exceptionally low levels of activity compared to other brain regions. A sparse activation pattern is observed even when the DG is engaged to process new information; for example, only ~1-3% of neurons in the DG granule cell layer (GCL) are activated after placing animals in a novel, enriched environment. Moreover, such physiologic stimulation of GCL neurons recruits young granule cells more readily than older cells. This sparse pattern of cell activation has largely been attributed to intrinsic circuit properties of the DG, such as reduced threshold for activation in younger cells, and increased inhibition onto older cells. Given these intrinsic properties, we asked whether such activation of young granule cells was unique to physiologic stimulation, or could be elicited by general pharmacological activation of the hippocampus. We found that administration of kainic acid (KA) at a low dose (5 mg/kg) to wildtype C57BL/6 mice activated a similarly sparse number of cells in the GCL as physiologic DG stimulation by exposure to a novel, enriched environment. However, unlike physiologic stimulation, 5 mg/kg KA activated primarily old granule cells as well as GABAergic interneurons. This finding indicates that intrinsic circuit properties of the DG alone may not be sufficient to support the engagement of young granule cells, and suggest that other factors such as the specificity of the pattern of inputs, may be involved.


Asunto(s)
Giro Dentado/citología , Animales , Giro Dentado/efectos de los fármacos , Giro Dentado/fisiología , Relación Dosis-Respuesta a Droga , Electroencefalografía , Femenino , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos
17.
Front Neurosci ; 14: 472, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32536852

RESUMEN

Seizure incidence is increased in Alzheimer's disease (AD) patients and mouse models, and treatment with the antiseizure drug levetiracetam improves cognition. We reported that one mechanism by which seizures can exert persistent effects on cognition is through accumulation of ΔFosB, a transcription factor with a long half-life. Even the infrequent seizures that spontaneously occur in transgenic mice expressing human amyloid precursor protein (APP) lead to persistent increases in ΔFosB in the hippocampus, similar to what we observed in patients with AD or temporal lobe epilepsy. ΔFosB epigenetically regulates expression of target genes, however, whether ΔFosB targets the same genes when induced by seizures in different neurological conditions is not clear. We performed ChIP-sequencing to assess the repertoire of ΔFosB target genes in APP mice and in pilocarpine-treated wildtype mice (Pilo mice), a pharmacological model of epilepsy. These mouse models allowed us to compare AD, in which seizures occur in the context of high levels of amyloid beta, and epilepsy, in which recurrent seizures occur without AD-specific pathophysiology. Network profiling of genes bound by ΔFosB in APP mice, Pilo mice, and respective control mice revealed that functional domains modulated by ΔFosB in the hippocampus are expanded and diversified in APP and Pilo mice (vs. respective controls). Domains of interest in both disease contexts involved neuronal excitability and neurotransmission, neurogenesis, chromatin remodeling, and cellular stress and neuroinflammation. To assess the gene targets bound by ΔFosB regardless of seizure etiology, we focused on 442 genes with significant ΔFosB binding in both APP and Pilo mice (vs. respective controls). Functional analyses identified pathways that regulate membrane potential, glutamatergic signaling, calcium homeostasis, complement activation, neuron-glia population maintenance, and chromatin dynamics. RNA-sequencing and qPCR measurements in independent mice detected altered expression of several ΔFosB targets shared in APP and Pilo mice. Our findings indicate that seizure-induced ΔFosB can bind genes in patterns that depend on seizure etiology, but can bind other genes regardless of seizure etiology. Understanding the factors that underlie these differences, such as chromatin accessibility and/or abundance of co-factors, could reveal novel insights into the control of gene expression in disorders with recurrent seizures.

18.
J Neurosci ; 28(19): 5007-17, 2008 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-18463254

RESUMEN

The enkephalin signaling pathway regulates various neural functions and can be altered by neurodegenerative disorders. In Alzheimer's disease (AD), elevated enkephalin levels may reflect compensatory processes or contribute to cognitive impairments. To differentiate between these possibilities, we studied transgenic mice that express human amyloid precursor protein (hAPP) and amyloid-beta (Abeta) peptides in neurons and exhibit key aspects of AD. Met-enkephalin levels in neuronal projections from the entorhinal cortex and dentate gyrus (brain regions important for memory that are affected in early stages of AD) were increased in hAPP mice, as were preproenkephalin mRNA levels. Genetic manipulations that exacerbate or prevent excitotoxicity also exacerbated or prevented the enkephalin alterations. In human AD brains, enkephalin levels in the dentate gyrus were also increased. In hAPP mice, enkephalin elevations correlated with the extent of Abeta-dependent neuronal and behavioral alterations, and memory deficits were reduced by irreversible blockade of mu-opioid receptors with the antagonist beta-funaltrexamine. We conclude that enkephalin elevations may contribute to cognitive impairments in hAPP mice and possibly in humans with AD. The therapeutic potential of reducing enkephalin production or signaling merits further exploration.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Conducta Animal , Modelos Animales de Enfermedad , Encefalina Metionina/metabolismo , Encefalinas/metabolismo , Neuronas , Precursores de Proteínas/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Giro Dentado/fisiopatología , Encefalinas/genética , Corteza Entorrinal/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/metabolismo , Precursores de Proteínas/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba
19.
Brain Res ; 1702: 38-45, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28919464

RESUMEN

Alzheimer's disease (AD) is a devastating neurodegenerative disease that is characterized by progressive cognitive decline and a prominent loss of hippocampal-dependent memory. Therefore, much focus has been placed on understanding the function and dysfunction of the hippocampus in AD. However, AD is also accompanied by a number of other debilitating cognitive and behavioral alterations including deficits in attention, cognitive processing, and sleep maintenance. The underlying mechanisms that give rise to impairments in such diverse behavioral domains are unknown, and identifying them would shed insight into the multifactorial nature of AD as well as reveal potential new therapeutic targets to improve overall function in AD. We present here several lines of evidence that suggest that dysregulation of the corticothalamic network may be a common denominator that contributes to the diverse cognitive and behavioral alterations in AD. First, we will review the mechanisms by which this network regulates processes that include attention, cognitive processing, learning and memory, and sleep maintenance. Then we will review how these behavioral and cognitive domains are altered in AD. We will also discuss how dysregulation of tightly regulated activity in the corticothalamic network can give rise to non-convulsive seizures and other forms of epileptiform activity that have also been documented in both AD patients and transgenic mouse models of AD. In summary, the corticothalamic network has the potential to be a master regulator of diverse cognitive and behavioral domains that are affected in AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Corteza Cerebral/fisiopatología , Tálamo/fisiopatología , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/fisiopatología , Corteza Cerebral/metabolismo , Trastornos del Conocimiento/fisiopatología , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Hipocampo/fisiología , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/fisiopatología , Lóbulo Temporal/fisiopatología , Tálamo/metabolismo
20.
Cell Rep ; 27(13): 3741-3751.e4, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242408

RESUMEN

Adult hippocampal neurogenesis has been reported to be decreased, increased, or not changed in Alzheimer's disease (AD) patients and related transgenic mouse models. These disparate findings may relate to differences in disease stage, or the presence of seizures, which are associated with AD and can stimulate neurogenesis. In this study, we investigate a transgenic mouse model of AD that exhibits seizures similarly to AD patients and find that neurogenesis is increased in early stages of disease, as spontaneous seizures became evident, but is decreased below control levels as seizures recur. Treatment with the antiseizure drug levetiracetam restores neurogenesis and improves performance in a neurogenesis-associated spatial discrimination task. Our results suggest that seizures stimulate, and later accelerate the depletion of, the hippocampal neural stem cell pool. These results have implications for AD as well as any disorder accompanied by recurrent seizures, such as epilepsy.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Convulsiones/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Células-Madre Neurales/patología , Convulsiones/genética , Convulsiones/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA