Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Exp Zool B Mol Dev Evol ; 334(7-8): 405-422, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32488995

RESUMEN

Carotenoids are lipid-soluble yellow to orange pigments produced by plants, bacteria, and fungi. They are consumed by animals and metabolized to produce molecules essential for gene regulation, vision, and pigmentation. Cave animals represent an interesting opportunity to understand how carotenoid utilization evolves. Caves are devoid of light, eliminating primary production of energy through photosynthesis and, therefore, limiting carotenoid availability. Moreover, the selective pressures that favor carotenoid-based traits, like pigmentation and vision, are relaxed. Astyanax mexicanus is a species of fish with multiple river-adapted (surface) and cave-adapted populations (i.e., Tinaja, Pachón, Molino). Cavefish exhibit regressive features, such as loss of eyes and melanin pigment, and constructive traits, like increased sensory neuromasts and starvation resistance. Here, we show that, unlike surface fish, Tinaja and Pachón cavefish accumulate carotenoids in the visceral adipose tissue. Carotenoid accumulation is not observed in Molino cavefish, indicating that it is not an obligatory consequence of eye loss. We used quantitative trait loci mapping and RNA sequencing to investigate genetic changes associated with carotenoid accumulation. Our findings suggest that multiple stages of carotenoid processing may be altered in cavefish, including absorption and transport of lipids, cleavage of carotenoids into unpigmented molecules, and differential development of intestinal cell types involved in carotenoid assimilation. Our study establishes A. mexicanus as a model to study the genetic basis of natural variation in carotenoid accumulation and how it impacts physiology.


Asunto(s)
Carotenoides/metabolismo , Characidae/genética , Animales , Evolución Biológica , Carotenoides/análisis , Cuevas , Characidae/anatomía & histología , Characidae/metabolismo , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , Ojo/anatomía & histología , Femenino , Grasa Intraabdominal/química , Masculino , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Transcriptoma
2.
Bioorg Med Chem Lett ; 30(8): 127014, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32081448

RESUMEN

Robust transport of therapeutic peptides and other medicinal molecules across tight epithelial barriers would overcome the major obstacle to oral delivery. We have already demonstrated that peptides conjugated to gangliosides (GM1 and GM3) having non-native short N-acyl groups hijack the endogenous process of intracellular lipid sorting resulting in transcytosis and delivery across epithelial barriers in vitro and in vivo. Here, we report synthetic methodologies to covalently conjugate peptides directly to short-acyl-chain C6-ceramides. We found that the short-acyl-chain ceramide domain is solely responsible for transcytosis in vitro. This clarifies and expands the platform of short-acyl-chain sphingolipids for conjugated peptide delivery across tight mucosal cell barriers from gangliosides to just the ceramide itself.


Asunto(s)
Ceramidas/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Péptidos/metabolismo , Transporte Biológico Activo , Células Cultivadas , Ceramidas/química , Relación Dosis-Respuesta a Droga , Células Epiteliales/química , Humanos , Mucosa Intestinal/química , Mucosa Intestinal/citología , Estructura Molecular , Péptidos/química , Relación Estructura-Actividad
3.
Traffic ; 16(6): 572-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25690058

RESUMEN

How the plasma membrane is bent to accommodate clathrin-independent endocytosis remains uncertain. Recent studies suggest Shiga and cholera toxin induce membrane curvature required for their uptake into clathrin-independent carriers by binding and cross-linking multiple copies of their glycosphingolipid receptors on the plasma membrane. But it remains unclear if toxin-induced sphingolipid crosslinking provides sufficient mechanical force for deforming the plasma membrane, or if host cell factors also contribute to this process. To test this, we imaged the uptake of cholera toxin B-subunit into surface-derived tubular invaginations. We found that cholera toxin mutants that bind to only one glycosphingolipid receptor accumulated in tubules, and that toxin binding was entirely dispensable for membrane tubulations to form. Unexpectedly, the driving force for tubule extension was supplied by the combination of microtubules, dynein and dynactin, thus defining a novel mechanism for generating membrane curvature during clathrin-independent endocytosis.


Asunto(s)
Membrana Celular/metabolismo , Endocitosis , Microtúbulos/metabolismo , Animales , Células COS , Chlorocebus aethiops , Toxina del Cólera/metabolismo , Clatrina/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Unión Proteica , Receptores de Transferrina/metabolismo
4.
Biophys J ; 111(12): 2547-2550, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27914621

RESUMEN

Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells. We show that when applied to cell-derived giant plasma membrane vesicles, a variant of CTxB containing only a single functional GM1 binding site exhibits significantly reduced partitioning to the ordered phase compared to wild-type CTxB with five binding sites. Moreover, monovalent CTxB does not stabilize membrane domains, unlike wild-type CTxB. These results support the long-held hypothesis that CTxB stabilizes raft domains via a lipid crosslinking mechanism and establish a role for crosslinking in the partitioning of CTxB to ordered domains.


Asunto(s)
Toxina del Cólera/metabolismo , Glicoesfingolípidos/química , Glicoesfingolípidos/metabolismo , Microdominios de Membrana/metabolismo , Animales , Células COS , Chlorocebus aethiops , Transporte de Proteínas
5.
J Biol Chem ; 288(36): 25804-25809, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23884419

RESUMEN

Cholera toxin causes diarrheal disease by binding ganglioside GM1 on the apical membrane of polarized intestinal epithelial cells and trafficking retrograde through sorting endosomes, the trans-Golgi network (TGN), and into the endoplasmic reticulum. A fraction of toxin also moves from endosomes across the cell to the basolateral plasma membrane by transcytosis, thus breeching the intestinal barrier. Here we find that sorting of cholera toxin into this transcytotic pathway bypasses retrograde transport to the TGN. We also find that GM1 sphingolipids can traffic from apical to basolateral membranes by transcytosis in the absence of toxin binding but only if the GM1 species contain cis-unsaturated or short acyl chains in the ceramide domain. We found previously that the same GM1 species are needed to efficiently traffic retrograde into the TGN and endoplasmic reticulum and into the recycling endosome, implicating a shared mechanism of action for sorting by lipid shape among these pathways.


Asunto(s)
Ceramidas/metabolismo , Toxina del Cólera/metabolismo , Toxina del Cólera/farmacología , Gangliósido G(M1)/metabolismo , Transcitosis/efectos de los fármacos , Animales , Ceramidas/genética , Perros , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Endosomas/genética , Endosomas/metabolismo , Gangliósido G(M1)/genética , Células de Riñón Canino Madin Darby
6.
Proc Natl Acad Sci U S A ; 108(38): 15846-51, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21911378

RESUMEN

Phosphatidylserine (PS) is a relatively minor constituent of biological membranes. Despite its low abundance, PS in the plasma membrane (PM) plays key roles in various phenomena such as the coagulation cascade, clearance of apoptotic cells, and recruitment of signaling molecules. PS also localizes in endocytic organelles, but how this relates to its cellular functions remains unknown. Here we report that PS is essential for retrograde membrane traffic at recycling endosomes (REs). PS was most concentrated in REs among intracellular organelles, and evectin-2 (evt-2), a protein of previously unknown function, was targeted to REs by the binding of its pleckstrin homology (PH) domain to PS. X-ray analysis supported the specificity of the binding of PS to the PH domain. Depletion of evt-2 or masking of intracellular PS suppressed membrane traffic from REs to the Golgi. These findings uncover the molecular basis that controls the RE-to-Golgi transport and identify a unique PH domain that specifically recognizes PS but not polyphosphoinositides.


Asunto(s)
Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilserinas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Endosomas/ultraestructura , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Modelos Biológicos , Fosfatidilserinas/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Interferencia de ARN , Células Vero
7.
J Am Chem Soc ; 133(40): 15878-81, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21905700

RESUMEN

Cell surface heptahelical G protein-coupled receptors (GPCRs) mediate critical cellular signaling pathways and are important pharmaceutical drug targets. (1) In addition to traditional small-molecule approaches, lipopeptide-based GPCR-derived pepducins have emerged as a new class of pharmaceutical agents. (2, 3) To better understand how pepducins interact with targeted receptors, we developed a cell-based photo-cross-linking approach to study the interaction between the pepducin agonist ATI-2341 and its target receptor, chemokine C-X-C-type receptor 4 (CXCR4). A pepducin analogue, ATI-2766, formed a specific UV-light-dependent cross-link to CXCR4 and to mutants with truncations of the N-terminus, the known chemokine docking site. These results demonstrate that CXCR4 is the direct binding target of ATI-2341 and suggest a new mechanism for allosteric modulation of GPCR activity. Adaptation and application of our findings should prove useful in further understanding pepducin modulation of GPCRs as well as enable new experimental approaches to better understand GPCR signal transduction.


Asunto(s)
Péptidos/química , Péptidos/farmacología , Receptores CXCR4/agonistas , Receptores CXCR4/metabolismo , Regulación Alostérica/efectos de los fármacos , Secuencia de Aminoácidos , Línea Celular , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Procesos Fotoquímicos , Rayos Ultravioleta
8.
J Mol Biol ; 365(5): 1326-36, 2007 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-17141270

RESUMEN

Among the unexpected chemistries that can be catalyzed by nucleic acid enzymes is photochemistry. We have reported the in vitro selection of a small, cofactor-independent deoxyribozyme, UV1C, capable of repairing thymine dimers in a DNA substrate, most optimally with light at a wavelength of >300 nm. We hypothesized that a guanine quadruplex functioned both as a light antenna and an electron source for the repair of the substrate within the enzyme-substrate complex. Here, we report structural and mechanistic investigations of that hypothesis. Contact-crosslinking and guanosine to inosine mutational studies reveal that the thymine dimer and the guanine quadruplex are positioned close to each other in the deoxyribozyme-substrate complex, and permit us to refine the structure and topology of the folded deoxyribozyme. In exploring the substrate utilization capabilities of UV1C, we find it to be able to repair uracil dimers as well as thymine dimers, as long as they are present in an overall deoxyribonucleotide milieu. Some surprising similarities with bacterial CPD photolyase enzymes are noted.


Asunto(s)
ADN Catalítico/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Secuencia de Bases , Catálisis/efectos de los fármacos , Reactivos de Enlaces Cruzados/farmacología , Desoxirribosa/química , Desoxirribosa/metabolismo , Guanina/metabolismo , Inosina/genética , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , Mutación Puntual/genética , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , ARN/química , Ribosa/química , Ribosa/metabolismo , Especificidad por Sustrato/efectos de los fármacos
9.
J Microbiol ; 56(3): 183-188, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29492875

RESUMEN

Mucosal surfaces that line our gastrointestinal tract are continuously exposed to trillions of bacteria that form a symbiotic relationship and impact host health and disease. It is only beginning to be understood that the cross-talk between the host and microbiome involve dynamic changes in commensal bacterial population, secretion, and absorption of metabolites between the host and microbiome. As emerging evidence implicates dysbiosis of gut microbiota in the pathology and progression of various diseases such as inflammatory bowel disease, obesity, and allergy, conventional treatments that either overlook the microbiome in the mechanism of action, or eliminate vast populations of microbes via wide-spectrum antibiotics need to be reconsidered. It is also becoming clear the microbiome can influence the body's response to therapeutic treatments for cancers. As such, targeting the microbiome as treatment has garnered much recent attention and excitement from numerous research labs and biotechnology companies. Treatments range from fecal microbial transplantation to precision-guided molecular approaches. Here, we survey recent progress in the development of innovative therapeutics that target the microbiome to treat disease, and highlight key findings in the interplay between host microbes and therapy.


Asunto(s)
Disbiosis/terapia , Enfermedades Gastrointestinales/terapia , Microbioma Gastrointestinal , Tracto Gastrointestinal/efectos de los fármacos , Probióticos/uso terapéutico , Antibacterianos/efectos adversos , Antibacterianos/uso terapéutico , Disbiosis/microbiología , Trasplante de Microbiota Fecal , Enfermedades Gastrointestinales/etiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiopatología , Humanos , Hipersensibilidad/etiología , Hipersensibilidad/terapia , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/terapia , Neoplasias/terapia , Obesidad/etiología , Obesidad/terapia , Simbiosis
10.
Bio Protoc ; 8(20)2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30505885

RESUMEN

Absorption and secretion of peptide and protein cargoes across single-cell thick mucosal and endothelial barriers occurs by active endocytic and vesicular trafficking that connects one side of the epithelial or endothelial cell (the lumen) with the other (the serosa or blood). Assays that assess this pathway must robustly control for non-specific and passive solute flux through weak or damaged intercellular junctions that seal the epithelial or endothelial cells together. Here we describe an in vitro cell culture Transwell assay for transcytosis of therapeutic peptides linked covalently to various species of the glycosphingolipid GM1. We recently used this assay to develop technology that harnesses endogenous mechanism of lipid sorting across epithelial cell barriers to enable oral delivery of peptide and protein therapeutics.

11.
Elife ; 72018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29851380

RESUMEN

Transport of biologically active molecules across tight epithelial barriers is a major challenge preventing therapeutic peptides from oral drug delivery. Here, we identify a set of synthetic glycosphingolipids that harness the endogenous process of intracellular lipid-sorting to enable mucosal absorption of the incretin hormone GLP-1. Peptide cargoes covalently fused to glycosphingolipids with ceramide domains containing C6:0 or smaller fatty acids were transported with 20-100-fold greater efficiency across epithelial barriers in vitro and in vivo. This was explained by structure-function of the ceramide domain in intracellular sorting and by the affinity of the glycosphingolipid species for insertion into and retention in cell membranes. In mice, GLP-1 fused to short-chain glycosphingolipids was rapidly and systemically absorbed after gastric gavage to affect glucose tolerance with serum bioavailability comparable to intraperitoneal injection of GLP-1 alone. This is unprecedented for mucosal absorption of therapeutic peptides, and defines a technology with many other clinical applications.


Asunto(s)
Absorción Fisiológica , Glicoesfingolípidos/metabolismo , Membrana Mucosa/metabolismo , Péptidos/uso terapéutico , Animales , Transporte Biológico Activo , Glucemia/metabolismo , Núcleo Celular/metabolismo , Ceramidas/química , Perros , Células Epiteliales/metabolismo , Gangliósido G(M1)/química , Gangliósido G(M1)/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Células de Riñón Canino Madin Darby , Masculino , Ratones Endogámicos C57BL , Oligosacáridos/química , Oligosacáridos/metabolismo , Reproducibilidad de los Resultados , Soluciones , Relación Estructura-Actividad , Transcitosis
12.
FEMS Microbiol Lett ; 266(2): 129-37, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17156122

RESUMEN

Cholera toxin (CT), and members of the AB(5) family of toxins enter host cells and hijack the cell's endogenous pathways to induce toxicity. CT binds to a lipid receptor on the plasma membrane (PM), ganglioside GM1, which has the ability to associate with lipid rafts. The toxin can then enter the cell by various modes of receptor-mediated endocytosis and traffic in a retrograde manner from the PM to the Golgi and the endoplasmic reticulum (ER). Once in the ER, a portion of the toxin is unfolded and retro-translocated to the cytosol so as to induce disease. GM1 is the vehicle that carries CT from PM to ER. Thus, the toxin pathway from PM to ER is a lipid-based sorting pathway, which is potentially meditated by the determinants of the GM1 ganglioside structure itself.


Asunto(s)
Membrana Celular/metabolismo , Toxina del Cólera/metabolismo , Endocitosis/fisiología , Retículo Endoplásmico/metabolismo , Animales , Humanos , Modelos Biológicos , Transporte de Proteínas/fisiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-28213463

RESUMEN

Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery.


Asunto(s)
Endocitosis , Células Epiteliales/metabolismo , Transporte Biológico/fisiología , Polaridad Celular , Sistemas de Liberación de Medicamentos , Endosomas/metabolismo , Endosomas/fisiología , Humanos , Metabolismo de los Lípidos , Modelos Biológicos
14.
J Control Release ; 175: 72-8, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24370893

RESUMEN

The incretin hormone Glucagon-like peptide 1 (GLP-1) requires delivery by injection for the treatment of Type 2 diabetes mellitus. Here, we test if the properties of glycosphingolipid trafficking in epithelial cells can be applied to convert GLP-1 into a molecule suitable for mucosal absorption. GLP-1 was coupled to the extracellular oligosaccharide domain of GM1 species containing ceramides with different fatty acids and with minimal loss of incretin bioactivity. When applied to apical surfaces of polarized epithelial cells in monolayer culture, only GLP-1 coupled to GM1-ceramides with short- or cis-unsaturated fatty acids trafficked efficiently across the cell to the basolateral membrane by transcytosis. In vivo studies showed mucosal absorption after nasal administration. The results substantiate our recently reported dependence on ceramide structure for trafficking the GM1 across polarized epithelial cells and support the idea that specific glycosphingolipids can be harnessed as molecular vehicles for mucosal delivery of therapeutic peptides.


Asunto(s)
Ceramidas/química , Portadores de Fármacos/química , Gangliósido G(M1)/química , Péptido 1 Similar al Glucagón/administración & dosificación , Incretinas/administración & dosificación , Secuencia de Aminoácidos , Animales , Línea Celular , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Portadores de Fármacos/metabolismo , Gangliósido G(M1)/metabolismo , Péptido 1 Similar al Glucagón/química , Células HEK293 , Humanos , Incretinas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Transcitosis
15.
Artículo en Inglés | MEDLINE | ID: mdl-22919642

RESUMEN

Some bacterial toxins and viruses have evolved the capacity to bind mammalian glycosphingolipids to gain access to the cell interior, where they can co-opt the endogenous mechanisms of cellular trafficking and protein translocation machinery to cause toxicity. Cholera toxin (CT) is one of the best-studied examples, and is the virulence factor responsible for massive secretory diarrhea seen in cholera. CT enters host cells by binding to monosialotetrahexosylganglioside (GM1 gangliosides) at the plasma membrane where it is transported retrograde through the trans-Golgi network (TGN) into the endoplasmic reticulum (ER). In the ER, a portion of CT, the CT-A1 polypeptide, is unfolded and then "retro-translocated" to the cytosol by hijacking components of the ER associated degradation pathway (ERAD) for misfolded proteins. CT-A1 rapidly refolds in the cytosol, thus avoiding degradation by the proteasome and inducing toxicity. Here, we highlight recent advances in our understanding of how the bacterial AB(5) toxins induce disease. We highlight the molecular mechanisms by which these toxins use glycosphingolipid to traffic within cells, with special attention to how the cell senses and sorts the lipid receptors. We also discuss several new studies that address the mechanisms of toxin unfolding in the ER and the mechanisms of CT A1-chain retro-translocation to the cytosol.


Asunto(s)
Toxinas Bacterianas/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células Eucariotas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Mamíferos , Unión Proteica , Transporte de Proteínas
16.
Dev Cell ; 23(3): 573-86, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22975326

RESUMEN

The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells. Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid sorting by ceramide structure and provide a molecular explanation for the diversity and specificity of retrograde trafficking by CT in host cells.


Asunto(s)
Membrana Celular/química , Ceramidas/química , Toxina del Cólera/química , Retículo Endoplásmico/química , Gangliósido G(M1)/química , Transporte Biológico , Membrana Celular/metabolismo , Células Cultivadas , Ceramidas/metabolismo , Toxina del Cólera/metabolismo , Retículo Endoplásmico/metabolismo , Gangliósido G(M1)/síntesis química , Gangliósido G(M1)/metabolismo , Humanos , Isoformas de Proteínas/síntesis química , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
17.
PLoS One ; 6(9): e24693, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21935440

RESUMEN

BACKGROUND: The glucose-dependent insulinotropic polypeptide (GIP) and the glucagon-like peptide-1 (GLP-1) receptors are considered complementary therapeutic targets for type 2 diabetes. Using recombinant membrane-tethered ligand (MTL) technology, the present study focused on defining optimized modulators of these receptors, as well as exploring how local anchoring influences soluble peptide function. METHODOLOGY/PRINCIPAL FINDINGS: Serial substitution of residue 7 in membrane-tethered GIP (tGIP) led to a wide range of activities at the GIP receptor, with [G(7)]tGIP showing enhanced efficacy compared to the wild type construct. In contrast, introduction of G(7) into the related ligands, tGLP-1 and tethered exendin-4 (tEXE4), did not affect signaling at the cognate GLP-1 receptor. Both soluble and tethered GIP and GLP-1 were selective activators of their respective receptors. Although soluble EXE4 is highly selective for the GLP-1 receptor, unexpectedly, tethered EXE4 was found to be a potent activator of both the GLP-1 and GIP receptors. Diverging from the pharmacological properties of soluble and tethered GIP, the newly identified GIP-R agonists, (i.e. [G(7)]tGIP and tEXE4) failed to trigger cognate receptor endocytosis. In an attempt to recapitulate the dual agonism observed with tEXE4, we conjugated soluble EXE4 to a lipid moiety. Not only did this soluble peptide activate both the GLP-1 and GIP receptors but, when added to receptor expressing cells, the activity persists despite serial washes. CONCLUSIONS: These findings suggest that conversion of a recombinant MTL to a soluble membrane anchored equivalent offers a means to prolong ligand function, as well as to design agonists that can simultaneously act on more than one therapeutic target.


Asunto(s)
Membrana Celular/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Exenatida , Polipéptido Inhibidor Gástrico/farmacología , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón , Humanos , Incretinas/farmacología , Microscopía Confocal , Péptidos/farmacología , Receptores de Glucagón/metabolismo , Ponzoñas/farmacología
18.
Toxins (Basel) ; 2(3): 310-25, 2010 03.
Artículo en Inglés | MEDLINE | ID: mdl-22069586

RESUMEN

Cholera toxin (CT), an AB(5)-subunit toxin, enters host cells by binding the ganglioside GM1 at the plasma membrane (PM) and travels retrograde through the trans-Golgi Network into the endoplasmic reticulum (ER). In the ER, a portion of CT, the enzymatic A1-chain, is unfolded by protein disulfide isomerase and retro-translocated to the cytosol by hijacking components of the ER associated degradation pathway for misfolded proteins. After crossing the ER membrane, the A1-chain refolds in the cytosol and escapes rapid degradation by the proteasome to induce disease by ADP-ribosylating the large G-protein Gs and activating adenylyl cyclase. Here, we review the mechanisms of toxin trafficking by GM1 and retro-translocation of the A1-chain to the cytosol.


Asunto(s)
Toxina del Cólera/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Toxina del Cólera/química , Gangliósido G(M1)/metabolismo , Humanos , Conformación Proteica , Transporte de Proteínas
19.
J Clin Invest ; 120(12): 4399-4409, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21041954

RESUMEN

Cholera toxin (CT) causes the massive secretory diarrhea associated with epidemic cholera. To induce disease, CT enters the cytosol of host cells by co-opting a lipid-based sorting pathway from the plasma membrane, through the trans-Golgi network (TGN), and into the endoplasmic reticulum (ER). In the ER, a portion of the toxin is unfolded and retro- translocated to the cytosol. Here, we established zebrafish as a genetic model of intoxication and examined the Derlin and flotillin proteins, which are thought to be usurped by CT for retro-translocation and lipid sorting, respectively. Using antisense morpholino oligomers and siRNA, we found that depletion of Derlin-1, a component of the Hrd-1 retro-translocation complex, was dispensable for CT-induced toxicity. In contrast, the lipid raft-associated proteins flotillin-1 and -2 were required. We found that in mammalian cells, CT intoxication was dependent on the flotillins for trafficking between plasma membrane/endosomes and two pathways into the ER, only one of which appears to intersect the TGN. These results revise current models for CT intoxication and implicate protein scaffolding of lipid rafts in the endo-somal sorting of the toxin-GM1 complex.


Asunto(s)
Toxina del Cólera/toxicidad , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Transporte Biológico Activo , Células COS , Línea Celular , Chlorocebus aethiops , Toxina del Cólera/farmacocinética , Endosomas/metabolismo , Gangliósido G(M1)/metabolismo , Humanos , Microdominios de Membrana/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , ARN Interferente Pequeño/genética , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
20.
J Mol Biol ; 388(1): 21-9, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19281822

RESUMEN

An in vitro selection search for DNAs capable of catalyzing photochemistry yielded two distinctive deoxyribozymes (DNAzymes) with photolyase activity: UV1C, which repaired thymine dimers within DNA using a UV light of >300 nm wavelength and no extraneous cofactor, and Sero1C, which required the tryptophan metabolite serotonin as cofactor in addition to the UV light. Catalysis by Sero1C conformed to Michaelis-Menten kinetics, and analysis of the action spectrum of Sero1C confirmed that serotonin did indeed serve as a catalytic cofactor rather than as a structural cofactor. Sero1C and UV1C showed strikingly distinct wavelength optima for their respective photoreactivation catalyses. Although the rate enhancements characteristic of the two DNAzymes were similar, the cofactor-requiring Sero1C repaired a substantially broader range of substrates compared to UV1C, including thymine, uracil, and a range of chimeric deoxypyrimidine and ribopyrimidine dimers. Similarities and differences in the properties of these two photolyase DNAzymes suggest, first, that the harnessing of less damaging UV light for the repair of photolesions may have been a primordial catalytic activity of nucleic acids, and, second, the broader substrate range of Sero1C may highlight an evolutionary advantage to coopting amino-acid-like cofactors by functionality-poor nucleic acid enzymes.


Asunto(s)
ADN Catalítico/química , ADN/química , Dímeros de Pirimidina/química , Serotonina/química , Secuencia de Bases , Reparación del ADN , ADN Catalítico/metabolismo , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Fotoquímica , Dímeros de Pirimidina/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA