Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051702

RESUMEN

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Asunto(s)
Magnoliopsida , Magnoliopsida/genética , Plantas/genética , Estrés Fisiológico/genética , Hojas de la Planta/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética
2.
Proc Natl Acad Sci U S A ; 120(10): e2217564120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853942

RESUMEN

The field of plant science has grown dramatically in the past two decades, but global disparities and systemic inequalities persist. Here, we analyzed ~300,000 papers published over the past two decades to quantify disparities across nations, genders, and taxonomy in the plant science literature. Our analyses reveal striking geographical biases-affluent nations dominate the publishing landscape and vast areas of the globe have virtually no footprint in the literature. Authors in Northern America are cited nearly twice as many times as authors based in Sub-Saharan Africa and Latin America, despite publishing in journals with similar impact factors. Gender imbalances are similarly stark and show remarkably little improvement over time. Some of the most affluent nations have extremely male biased publication records, despite supposed improvements in gender equality. In addition, we find that most studies focus on economically important crop and model species, and a wealth of biodiversity is underrepresented in the literature. Taken together, our analyses reveal a problematic system of publication, with persistent imbalances that poorly capture the global wealth of scientific knowledge and biological diversity. We conclude by highlighting disparities that can be addressed immediately and offer suggestions for long-term solutions to improve equity in the plant sciences.


Asunto(s)
Biodiversidad , Equidad de Género , Femenino , Masculino , Humanos , Geografía , Conocimiento , América del Norte
3.
Mol Biol Evol ; 41(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38982580

RESUMEN

South American coca (Erythroxylum coca and E. novogranatense) has been a keystone crop for many Andean and Amazonian communities for at least 8,000 years. However, over the last half-century, global demand for its alkaloid cocaine has driven intensive agriculture of this plant and placed it in the center of armed conflict and deforestation. To monitor the changing landscape of coca plantations, the United Nations Office on Drugs and Crime collects annual data on their areas of cultivation. However, attempts to delineate areas in which different varieties are grown have failed due to limitations around identification. In the absence of flowers, identification relies on leaf morphology, yet the extent to which this is reflected in taxonomy is uncertain. Here, we analyze the consistency of the current naming system of coca and its four closest wild relatives (the "coca clade"), using morphometrics, phylogenomics, molecular clocks, and population genomics. We include name-bearing type specimens of coca's closest wild relatives E. gracilipes and E. cataractarum. Morphometrics of 342 digitized herbarium specimens show that leaf shape and size fail to reliably discriminate between species and varieties. However, the statistical analyses illuminate that rounder and more obovate leaves of certain varieties could be associated with the subtle domestication syndrome of coca. Our phylogenomic data indicate extensive gene flow involving E. gracilipes which, combined with morphometrics, supports E. gracilipes being retained as a single species. Establishing a robust evolutionary-taxonomic framework for the coca clade will facilitate the development of cost-effective genotyping methods to support reliable identification.


Asunto(s)
Filogenia , Evolución Biológica , Coca/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética
4.
PLoS Comput Biol ; 20(2): e1011845, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315720

RESUMEN

Leaves are often described in language that evokes a single shape. However, embedded in that descriptor is a multitude of latent shapes arising from evolutionary, developmental, environmental, and other effects. These confounded effects manifest at distinct developmental time points and evolve at different tempos. Here, revisiting datasets comprised of thousands of leaves of vining grapevine (Vitaceae) and maracuyá (Passifloraceae) species, we apply a technique from the mathematical field of topological data analysis to comparatively visualize the structure of heteroblastic and ontogenetic effects on leaf shape in each group. Consistent with a morphologically closer relationship, members of the grapevine dataset possess strong core heteroblasty and ontogenetic programs with little deviation between species. Remarkably, we found that most members of the maracuyá family also share core heteroblasty and ontogenetic programs despite dramatic species-to-species leaf shape differences. This conservation was not initially detected using traditional analyses such as principal component analysis or linear discriminant analysis. We also identify two morphotypes of maracuyá that deviate from the core structure, suggesting the evolution of new developmental properties in this phylogenetically distinct sub-group. Our findings illustrate how topological data analysis can be used to disentangle previously confounded developmental and evolutionary effects to visualize latent shapes and hidden relationships, even ones embedded in complex, high-dimensional datasets.


Asunto(s)
Passifloraceae , Vitaceae , Hojas de la Planta/anatomía & histología , Análisis de Datos
5.
BMC Plant Biol ; 24(1): 283, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627633

RESUMEN

BACKGROUND: Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch's Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch's Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch's Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. RESULTS: The Dakapo and Merlot cases of Witch's Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch's Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968-974 unique genetic mutations in our two Witch's Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch's Broom impacting the gene GSVIVG01008260001. CONCLUSIONS: The Witch's Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch's Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.


Asunto(s)
Hojas de la Planta , Vitis , Vitis/genética , Regulación de la Expresión Génica de las Plantas
6.
New Phytol ; 243(2): 781-796, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757746

RESUMEN

The iconic, palmately compound leaves of Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques. Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using Cannabis as an example. We model corresponding pseudo-landmarks for each leaflet as angle-radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves. We analyze 341 leaves from 24 individuals from nine Cannabis accessions. Using 3591 pseudo-landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number. Intra-leaf modeling offers a rapid, cost-effective means of identifying Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes.


Asunto(s)
Cannabis , Modelos Biológicos , Hojas de la Planta , Hojas de la Planta/anatomía & histología , Cannabis/genética , Cannabis/crecimiento & desarrollo
7.
Am J Bot ; 109(7): 1063-1073, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35851467

RESUMEN

PREMISE: Leaf lobing and leaf size vary considerably across and within species, including among grapevines (Vitis spp.), some of the best-studied leaves. We examined the relationship between leaf lobing and leaf area across grapevine populations that varied in extent of leaf lobing. METHODS: We used homologous landmarking techniques to measure 2632 leaves across 2 years in 476 unique, genetically distinct grapevines from five biparental crosses that vary primarily in the extent of lobing. We determined to what extent leaf area explained variation in lobing, vein length, and vein to blade ratio. RESULTS: Although lobing was the primary source of variation in shape across the leaves we measured, leaf area varied only slightly as a function of lobing. Rather, leaf area increases as a function of total major vein length, total branching vein length, and vein to blade ratio. These relationships are stronger for more highly lobed leaves, with the residuals for each model differing as a function of distal lobing. CONCLUSIONS: For leaves with different extents of lobing but the same area, the more highly lobed leaves have longer veins and higher vein to blade ratios, allowing them to maintain similar leaf areas despite increased lobing. These findings show how more highly lobed leaves may compensate for what would otherwise result in a reduced leaf area, allowing for increased photosynthetic capacity through similar leaf size.


Asunto(s)
Hojas de la Planta , Vitis
8.
Am J Bot ; 108(4): 571-579, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33901305

RESUMEN

PREMISE: As a leaf expands, its shape dynamically changes. Previously, we documented an allometric relationship between vein and blade area in grapevine leaves. Larger leaves have a smaller ratio of primary and secondary vein area relative to blade area compared to smaller leaves. We sought to use allometry as an indicator of leaf size and plasticity. METHODS: We measured the ratio of vein-to-blade area from the same 208 vines across four growing seasons (2013, 2015, 2016, and 2017). Matching leaves by vine and node, we analyzed the correlation between the size and shape of grapevine leaves as repeated measures with climate variables across years. RESULTS: The proportion of leaf area occupied by vein and blade exponentially decreased and increased, respectively, during leaf expansion making their ratio a stronger indicator of leaf size than area itself. Total precipitation and leaf wetness hours of the previous year but not the current showed strong negative correlations with vein-to-blade ratio, whereas maximum air temperature from the previous year was positively correlated. CONCLUSIONS: Our results demonstrate that vein-to-blade ratio is a strong allometric indicator of leaf size and plasticity in grapevines measured across years. Grapevine leaf primordia are initiated in buds the year before they emerge, and we found that total precipitation and maximum air temperature of the previous growing season exerted the largest statistically significant effects on leaf morphology. Vein-to-blade ratio is a promising allometric indicator of relationships between leaf morphology and climate, the robustness of which should be explored further.


Asunto(s)
Vitis , Clima , Hojas de la Planta , Estaciones del Año , Temperatura
9.
Dev Dyn ; 249(7): 816-833, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246730

RESUMEN

Shape is data and data is shape. Biologists are accustomed to thinking about how the shape of biomolecules, cells, tissues, and organisms arise from the effects of genetics, development, and the environment. Less often do we consider that data itself has shape and structure, or that it is possible to measure the shape of data and analyze it. Here, we review applications of topological data analysis (TDA) to biology in a way accessible to biologists and applied mathematicians alike. TDA uses principles from algebraic topology to comprehensively measure shape in data sets. Using a function that relates the similarity of data points to each other, we can monitor the evolution of topological features-connected components, loops, and voids. This evolution, a topological signature, concisely summarizes large, complex data sets. We first provide a TDA primer for biologists before exploring the use of TDA across biological sub-disciplines, spanning structural biology, molecular biology, evolution, and development. We end by comparing and contrasting different TDA approaches and the potential for their use in biology. The vision of TDA, that data are shape and shape is data, will be relevant as biology transitions into a data-driven era where the meaningful interpretation of large data sets is a limiting factor.


Asunto(s)
Biología Computacional/métodos , Análisis de Datos , Biología Evolutiva/métodos , Regulación del Desarrollo de la Expresión Génica , Algoritmos , Animales , Encéfalo/embriología , Encéfalo/fisiología , Humanos , Matemática , Ratones , Modelos Teóricos , Red Nerviosa , Distribución Normal , Reconocimiento de Normas Patrones Automatizadas , Plantas , Tomografía Computarizada por Rayos X
10.
New Phytol ; 226(3): 851-865, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31880321

RESUMEN

Commercial tomato (Solanum lycopersicum) is one of the most widely grown vegetable crops worldwide. Heirloom tomatoes retain extensive genetic diversity and a considerable range of fruit quality and leaf morphological traits. Here the role of leaf morphology was investigated for its impact on fruit quality. Heirloom cultivars were grown in field conditions, and BRIX by yield (BY) and other traits were measured over a 14-wk period. The complex relationships among these morphological and physiological traits were evaluated using partial least-squares path modeling, and a consensus model was developed. Photosynthesis contributed strongly to vegetative biomass and sugar content of fruits but had a negative impact on yield. Conversely leaf shape, specifically rounder leaves, had a strong positive impact on both fruit sugar content and yield. Cultivars such as Stupice and Glacier, with very round leaves, had the highest performance in both fruit sugar and yield. Our model accurately predicted BY for two commercial cultivars using leaf shape data as input. This study revealed the importance of leaf shape to fruit quality in tomato, with rounder leaves having significantly improved fruit quality. This correlation was maintained across a range of diverse genetic backgrounds and shows the importance of leaf morphology in tomato crop improvement.


Asunto(s)
Solanum lycopersicum , Frutas , Solanum lycopersicum/genética , Fenotipo , Fotosíntesis , Hojas de la Planta
11.
Am J Bot ; 107(4): 676-688, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32270876

RESUMEN

PREMISE: The size and shape (physiognomy) of woody, dicotyledonous angiosperm leaves are correlated with climate. These relationships are the basis for multiple paleoclimate proxies. Here we test whether Vitis exhibits phenotypic plasticity and whether physiognomy varies along the vine. METHODS: We used Digital Leaf Physiognomy (DiLP) to measure leaf characters of four Vitis species from the USDA Germplasm Repository (Geneva, New York) from the 2012-2013 and 2014-2015 leaf-growing seasons, which had different environmental conditions. RESULTS: Leaf shape changed allometrically through developmental stages; early stages were more linear than later stages. There were significant differences in physiognomy in the same developmental stage between the growing seasons, and species had significant differences in mean physiognomy between growing seasons. Phenotypic plasticity was defined as changes between growing seasons after controlling for developmental stage or after averaging all developmental stages. Vitis amurensis and V. riparia had the greatest phenotypic plasticity. North American species exhibited significant differences in tooth area:blade area. Intermediate developmental stages were most likely to exhibit phenotypic plasticity, and only V. amurensis exhibited phenotypic plasticity in later developmental stages. CONCLUSIONS: Leaves have variable phenotypic plasticity along the vine. Environmental signal was strongest in intermediate developmental stages. This is significant for leaf physiognomic-paleoclimate proxies because these leaves are likely the most common in leaf litter and reflect leaves primarily included in paleoclimate reconstructions. Early season and early developmental stages have the potential to be confounding factors but are unlikely to exert significant influence because of differential preservation potential.


Asunto(s)
Vitis , Clima , Ambiente , New York , Hojas de la Planta
12.
Proc Natl Acad Sci U S A ; 114(1): E57-E66, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27999177

RESUMEN

Leaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D1), which is responsible for the major leaf shapes in cotton. The l-D1 locus is not only of agricultural importance in cotton, but through pioneering chimeric and morphometric studies, it has contributed to fundamental knowledge about leaf development. Here we show that an HD-Zip transcription factor homologous to the LATE MERISTEM IDENTITY1 (LMI1) gene of Arabidopsis is the causal gene underlying the l-D1 locus. The classical okra leaf shape allele has a 133-bp tandem duplication in the promoter, correlated with elevated expression, whereas an 8-bp deletion in the third exon of the presumed wild-type normal allele causes a frame-shifted and truncated coding sequence. Our results indicate that subokra is the ancestral leaf shape of tetraploid cotton that gave rise to the okra allele and that normal is a derived mutant allele that came to predominate and define the leaf shape of cultivated cotton. Virus-induced gene silencing (VIGS) of the LMI1-like gene in an okra variety was sufficient to induce normal leaf formation. The developmental changes in leaves conferred by this gene are associated with a photosynthetic transcriptomic signature, substantiating its use by breeders to produce a superior cotton ideotype.


Asunto(s)
Gossypium/genética , Gossypium/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Factores de Transcripción/genética , Secuencia de Aminoácidos/genética , Mutación del Sistema de Lectura/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Regiones Promotoras Genéticas/genética
13.
Plant Physiol ; 177(4): 1382-1395, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29871979

RESUMEN

Efforts to understand the genetic and environmental conditioning of plant morphology are hindered by the lack of flexible and effective tools for quantifying morphology. Here, we demonstrate that persistent-homology-based topological methods can improve measurement of variation in leaf shape, serrations, and root architecture. We apply these methods to 2D images of leaves and root systems in field-grown plants of a domesticated introgression line population of tomato (Solanum pennellii). We find that compared with some commonly used conventional traits, (1) persistent-homology-based methods can more comprehensively capture morphological variation; (2) these techniques discriminate between genotypes with a larger normalized effect size and detect a greater number of unique quantitative trait loci (QTLs); (3) multivariate traits, whether statistically derived from univariate or persistent-homology-based traits, improve our ability to understand the genetic basis of phenotype; and (4) persistent-homology-based techniques detect unique QTLs compared to conventional traits or their multivariate derivatives, indicating that previously unmeasured aspects of morphology are now detectable. The QTL results further imply that genetic contributions to morphology can affect both the shoot and root, revealing a pleiotropic basis to natural variation in tomato. Persistent homology is a versatile framework to quantify plant morphology and developmental processes that complements and extends existing methods.


Asunto(s)
Estudios de Asociación Genética , Modelos Teóricos , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Solanum/fisiología , Procesamiento de Imagen Asistido por Computador , Hojas de la Planta/anatomía & histología , Raíces de Plantas/anatomía & histología , Brotes de la Planta/fisiología , Sitios de Carácter Cuantitativo , Solanum/genética
14.
Plant Cell Environ ; 42(5): 1575-1589, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30523629

RESUMEN

Coordination between structural and physiological traits is key to plants' responses to environmental fluctuations. In heterobaric leaves, bundle sheath extensions (BSEs) increase photosynthetic performance (light-saturated rates of photosynthesis, Amax ) and water transport capacity (leaf hydraulic conductance, Kleaf ). However, it is not clear how BSEs affect these and other leaf developmental and physiological parameters in response to environmental conditions. The obscuravenosa (obv) mutation, found in many commercial tomato varieties, leads to absence of BSEs. We examined structural and physiological traits of tomato heterobaric and homobaric (obv) near-isogenic lines grown at two different irradiance levels. Kleaf , minor vein density, and stomatal pore area index decreased with shading in heterobaric but not in homobaric leaves, which show similarly lower values in both conditions. Homobaric plants, on the other hand, showed increased Amax , leaf intercellular air spaces, and mesophyll surface area exposed to intercellular airspace (Smes ) in comparison with heterobaric plants when both were grown in the shade. BSEs further affected carbon isotope discrimination, a proxy for long-term water-use efficiency. BSEs confer plasticity in traits related to leaf structure and function in response to irradiance levels and might act as a hub integrating leaf structure, photosynthetic function, and water supply and demand.


Asunto(s)
Hojas de la Planta , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/fisiología , Luz , Solanum lycopersicum , Fotosíntesis/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Agua/fisiología
15.
J Exp Bot ; 70(21): 6261-6276, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504758

RESUMEN

Inflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching structures with appropriate tools. High information content datasets are required to represent the actual structure and facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to clarify evolutionary and developmental inflorescence patterns. We combined advanced imaging (X-ray tomography) and computational approaches (topological and geometric data analysis and structural simulations) to comprehensively characterize grapevine inflorescence architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering and correlation analyses revealed unexpected relationships, for example pedicel branch angles were largely independent of other traits. We identified multivariate traits that typified species, which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits had strong signals across phylogenetic clades, providing insight into the evolution of inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and other branched plant structures that can be used to tease apart subtle, heritable features for a better understanding of genetic and environmental effects on plant phenotypes.


Asunto(s)
Imagenología Tridimensional , Inflorescencia/anatomía & histología , Análisis por Conglomerados , Análisis Discriminante , Frutas/anatomía & histología , Análisis Multivariante , Filogenia , Vitis , Rayos X
16.
Plant Physiol ; 175(1): 376-391, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28794258

RESUMEN

Thicker leaves allow plants to grow in water-limited conditions. However, our understanding of the genetic underpinnings of this highly functional leaf shape trait is poor. We used a custom-built confocal profilometer to directly measure leaf thickness in a set of introgression lines (ILs) derived from the desert tomato Solanum pennellii and identified quantitative trait loci. We report evidence of a complex genetic architecture of this trait and roles for both genetic and environmental factors. Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and, in some cases, increased leaf ploidy. We characterized the thick IL2-5 and IL4-3 in detail and found increased mesophyll cell size and leaf ploidy levels, suggesting that endoreduplication underpins leaf thickness in tomato. Next, we queried the transcriptomes and inferred dynamic Bayesian networks of gene expression across early leaf ontogeny in these lines to compare the molecular networks that pattern leaf thickness. We show that thick ILs share S. pennellii-like expression profiles for putative regulators of cell shape and meristem determinacy as well as a general signature of cell cycle-related gene expression. However, our network data suggest that leaf thickness in these two lines is patterned at least partially by distinct mechanisms. Consistent with this hypothesis, double homozygote lines combining introgression segments from these two ILs show additive phenotypes, including thick leaves, higher ploidy levels, and larger palisade mesophyll cells. Collectively, these data establish a framework of genetic, anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted tomato.


Asunto(s)
Adaptación Fisiológica/genética , Redes Reguladoras de Genes , Sitios de Carácter Cuantitativo/genética , Solanum/genética , Teorema de Bayes , Clima Desértico , Especificidad de Órganos , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Análisis de Secuencia de ARN , Solanum/anatomía & histología , Solanum/crecimiento & desarrollo , Solanum/fisiología
17.
PLoS Genet ; 11(1): e1004900, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25569326

RESUMEN

Convergent morphologies have arisen in plants multiple times. In non-vascular and vascular land plants, convergent morphology in the form of roots, stems, and leaves arose. The morphology of some green algae includes an anchoring holdfast, stipe, and leaf-like fronds. Such morphology occurs in the absence of multicellularity in the siphonous algae, which are single cells. Morphogenesis is separate from cellular division in the land plants, which although are multicellular, have been argued to exhibit properties similar to single celled organisms. Within the single, macroscopic cell of a siphonous alga, how are transcripts partitioned, and what can this tell us about the development of similar convergent structures in land plants? Here, we present a de novo assembled, intracellular transcriptomic atlas for the giant coenocyte Caulerpa taxifolia. Transcripts show a global, basal-apical pattern of distribution from the holdfast to the frond apex in which transcript identities roughly follow the flow of genetic information in the cell, transcription-to-translation. The analysis of the intersection of transcriptomic atlases of a land plant and Caulerpa suggests the recurrent recruitment of transcript accumulation patterns to organs over large evolutionary distances. Our results not only provide an intracellular atlas of transcript localization, but also demonstrate the contribution of transcript partitioning to morphology, independent from multicellularity, in plants.


Asunto(s)
Caulerpa/genética , Perfilación de la Expresión Génica , Morfogénesis/genética , Caulerpa/crecimiento & desarrollo , Ciclo Celular/genética , División Celular/genética , Bases de Datos de Ácidos Nucleicos , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Análisis de Componente Principal , Biosíntesis de Proteínas , Transcripción Genética
18.
Dev Biol ; 419(1): 41-53, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381079

RESUMEN

Chimeras - organisms that are composed of cells of more than one genotype - captured the human imagination long before they were formally described and used in the laboratory. These organisms owe their namesake to a fire-breathing monster from Greek mythology that has the head of a lion, the body of a goat, and the tail of a serpent. The first description of a non-fictional chimera dates back to the middle of the seventeenth century when the Florentine gardener Pietro Nati discovered an adventitious shoot growing from the graft junction between sour orange (Citrus aurantium) and citron (Citrus medica). This perplexing chimera that grows with sectors phenotypically resembling each of the citrus progenitors inspired discussion and wonder from the scientific community and was fittingly named the 'Bizzaria'. Initially, the 'Bizzaria' was believed to be an asexual hybrid that formed from a cellular fusion between the grafted parents; however, in-depth cellular analyses carried out centuries later demonstrated that the 'Bizzaria', along with other chimeras, owe their unique sectored appearance to a conglomeration of cells from the two donors. Since this pivotal discovery at the turn of the twentieth century, chimeras have served both as tools and as unique biological phenomena that have contributed to our understanding of plant development at the cellular, tissue, and organismal level. Rapid advancements in genome sequencing technologies have enabled the establishment of new model species with novel morphological and developmental features that enable the generation of chimeric organisms. In this review, we show that genetic mosaic and chimera studies provide a technologically simple way to delve into the organismal, genetic, and genomic inner workings underlying the development of diverse model organisms. Moreover, we discuss the unique opportunity that chimeras present to explore universal principles governing intercellular communication and the coordination of organismal biology in a heterogenomic landscape.


Asunto(s)
Quimera , Fitomejoramiento , Quimera/anatomía & histología , Quimera/clasificación , Quimera/genética , Inestabilidad Cromosómica , Cromosomas de las Plantas/genética , Citrus/genética , Historia del Siglo XVII , Vigor Híbrido , Meristema/citología , Modelos Biológicos , Mosaicismo , Fenotipo , Fitomejoramiento/historia , Brotes de la Planta/citología , Plantas/genética , Plantas Modificadas Genéticamente , Especificidad de la Especie , Trasplantes
19.
Dev Biol ; 419(1): 85-98, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27554165

RESUMEN

The spatiotemporal localization of the plant hormone auxin acts as a positional cue during early leaf and flower organogenesis. One of the main contributors to auxin localization is the auxin efflux carrier PIN-FORMED1 (PIN1). Phylogenetic analysis has revealed that PIN1 genes are split into two sister clades; PIN1 and the relatively uncharacterized Sister-Of-PIN1 (SoPIN1). In this paper we identify entire-2 as a loss-of-function SlSoPIN1a (Solyc10g078370) mutant in Solanum lycopersicum. The entire-2 plants are unable to specify proper leaf initiation leading to a frequent switch from the wild type spiral phyllotactic pattern to distichous and decussate patterns. Leaves in entire-2 are large and less complex and the leaflets display spatial deformities in lamina expansion, vascular development, and margin specification. During sympodial growth in entire-2 the specification of organ position and identity is greatly affected resulting in variable branching patterns on the main sympodial and inflorescence axes. To understand how SlSoPIN1a functions in establishing proper auxin maxima we used the auxin signaling reporter DR5: Venus to visualize differences in auxin localization between entire-2 and wild type. DR5: Venus visualization shows a widening of auxin localization which spreads to subepidermal tissue layers during early leaf and flower organogenesis, showing that SoPIN1 functions to focus auxin signaling to the epidermal layer. The striking spatial deformities observed in entire-2 help provide a mechanistic framework for explaining the function of the SoPIN1 clade in S.lycopersicum.


Asunto(s)
Flores/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/fisiología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Solanum lycopersicum/genética , Transporte Biológico , Codón sin Sentido , Flores/metabolismo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Prueba de Complementación Genética , Solanum lycopersicum/crecimiento & desarrollo , Meristema/metabolismo , Familia de Multigenes/genética , Mutación , Peptidilprolil Isomerasa de Interacción con NIMA/deficiencia , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Organogénesis/genética , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética
20.
New Phytol ; 213(4): 1632-1641, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28116755

RESUMEN

Cassava (Manihot esculenta) feeds c. 800 million people world-wide. Although this crop displays high productivity under drought and poor soil conditions, it is susceptible to disease, postharvest deterioration and the roots contain low nutritional content. Here, we provide molecular identities for 11 cassava tissue/organ types through RNA-sequencing and develop an open access, web-based interface for further interrogation of the data. Through this dataset, we consider the physiology of cassava. Specifically, we focus on identification of the transcriptional signatures that define the massive, underground storage roots used as a food source and the favored target tissue for transgene integration and genome editing, friable embryogenic callus (FEC). Further, we identify promoters able to drive strong expression in multiple tissue/organs. The information gained from this study is of value for both conventional and biotechnological improvement programs.


Asunto(s)
Productos Agrícolas/genética , Abastecimiento de Alimentos , Perfilación de la Expresión Génica , Manihot/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA