RESUMEN
The molecular mechanisms that link the sympathetic stress response and inflammation remain obscure. Here we found that the transcription factor Nr4a1 regulated the production of norepinephrine (NE) in macrophages and thereby limited experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Lack of Nr4a1 in myeloid cells led to enhanced NE production, accelerated infiltration of leukocytes into the central nervous system (CNS) and disease exacerbation in vivo. In contrast, myeloid-specific deletion of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, protected mice against EAE. Furthermore, we found that Nr4a1 repressed autocrine NE production in macrophages by recruiting the corepressor CoREST to the Th promoter. Our data reveal a new role for macrophages in neuroinflammation and identify Nr4a1 as a key regulator of catecholamine production by macrophages.
Asunto(s)
Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/inmunología , Sistema Nervioso Simpático/inmunología , Animales , Línea Celular , Células Cultivadas , Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Expresión Génica/inmunología , Humanos , Inflamación/genética , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Norepinefrina/inmunología , Norepinefrina/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sistema Nervioso Simpático/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/inmunología , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
The surveillance of body barriers relies on resident T cells whose repertoires are biased toward particular γδ T cell antigen receptors (TCRs) according to location. These γδ TCRs can recognize ligands that emerge after stress. Through the use of intravital dynamics-immunosignal correlative microscopy, we found that γ-chain variable region 5 (V(γ)5) TCRs expressed by epidermal T cells were constitutively clustered and functionally activated in vivo at steady state, forming true immunological synapses that polarized and anchored T cell projections at squamous keratinocyte tight junctions. This synaptogenesis depended on TCR variable domains, the kinase Lck and the integrin α(E)ß(7) but not the γδ lineage or the receptor NKG2D. In response to tissue stress, TCR-proximal signals did not increase substantially but underwent stress mode-dependent relocalization toward the basal epidermis and Langerhans cells. Thus, the γδ TCR orchestrates barrier surveillance proactively, presumably by recognizing tissue ligands expressed in the steady state.
Asunto(s)
Epidermis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Animales , Queratinocitos/inmunología , Ligandos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Transducción de Señal , Linfocitos T/inmunologíaRESUMEN
BACKGROUND/AIMS: Glucose metabolism has been proven as an essential process for proliferating keratinocytes, which highlights the importance of glucose transporter-1 (GLUT1) not only in the onset of psoriasis but also in the progression and severity of this inflammation-driven disease. In this study, we attempted to find a connection between proinflammatory cytokines (IL-6, IL-17, IL-23, IL-36, TNF-α), a skin inflammation inducing agent - imiquimod (IMQ) and GLUT1 expression. METHODS: Human keratinocyte HaCaT cell line was incubated with exogenous cytokines: IL-6, IL-17A, IL-23, IL-36, TNF-α at a final concentration of 100 ng/ml, or with 1 µM of IMQ, for 48 h. Following the stimulation, glucose uptake and GLUT1 expression were evaluated. The activity of GLUT1 was measured in the presence of a selective GLUT1 inhibitor, BAY-876. The expression of GLUT1 was examined by immunofluorescence and quantified by qPCR, Western blotting and densitometry. RESULTS: The results from qPCR analysis showed that the administration of exogenous IL-6, IL-17, IL-23 and IL-36 to HaCaT cells resulted in upregulation of GLUT1-encoding SLC2A1 gene, while TNF-α had no significant effect. The same results were confirmed by immunofluorescence analysis, as the fluorescent intensity of GLUT1 was elevated following cytokine and IMQ stimulation. Western blot and densitometry showed that all examined cytokines, as well as IMQ, increased GLUT1 expression. HaCaT cells displayed an improved intracellular 2-deoxy-D-glucose (2-DG) uptake and GLUT1 activity after stimulation by exogenous cytokines and IMQ. The highest uptake of 2-DG was observed after IL-23 stimulation (1.93x) and the lowest after TNF-α stimulation (1.07x). BAY-876 inhibited the 2-DG uptake compared to control. CONCLUSION: Our findings suggest that cytokines and IMQ may play a key role in regulating GLUT1 expression in HaCaT cells. We believe that GLUT1 overexpression could potentially be utilized in the targeted treatment of psoriasis.
Asunto(s)
Citocinas , Psoriasis , Humanos , Animales , Ratones , Imiquimod/farmacología , Imiquimod/metabolismo , Imiquimod/uso terapéutico , Citocinas/metabolismo , Interleucina-17/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Queratinocitos/metabolismo , Psoriasis/tratamiento farmacológico , Inflamación/metabolismo , Interleucina-23/metabolismo , Interleucina-23/farmacología , Interleucina-23/uso terapéutico , Modelos Animales de Enfermedad , Piel/metabolismo , Ratones Endogámicos BALB CRESUMEN
Mesenchymal stem cells (MSCs) and their derivatives can be promising tools in oncology including ovarian cancer treatment. This study aimed to determine the effect of HATMSC2-MVs (microvesicles derived from human immortalized mesenchymal stem cells of adipose tissue origin) on the fate and behavior of primary ovarian cancer cells. Human primary ovarian cancer (OvCa) cells were isolated from two sources: post-operative tissue of ovarian cancer and ascitic fluid. The phenotype of cells was characterized using flow cytometry, real-time RT-PCR, and immunofluorescence staining. The effect of HATMSC2-MVs on the biological activity of primary cells was analyzed in 2D (proliferation, migration, and cell survival) and 3D (cell survival) models. We demonstrated that HATMSC2-MVs internalized into primary ovarian cancer cells decrease the metabolic activity and induce the cancer cell death and are leading to decreased migratory activity of tumor cells. The results suggests that the anti-cancer effect of HATMSC2-MVs, with high probability, is contributed by the delivery of molecules that induce cell cycle arrest and apoptosis (p21, tumor suppressor p53, executor caspase 3) and proapoptotic regulators (bad, BIM, Fas, FasL, p27, TRAIL-R1, TRAIL-R2), and their presence has been confirmed by apoptotic protein antibody array. In this study, we demonstrate the ability to inhibit primary OvCa cells growth and apoptosis induction after exposure of OvCa cells on HATMSC2-MVs treatment; however, further studies are needed to clarify their anticancer activities.
Asunto(s)
Micropartículas Derivadas de Células , Células Madre Mesenquimatosas , Neoplasias Ováricas , Humanos , Femenino , Células Madre Mesenquimatosas/metabolismo , Apoptosis , Tejido Adiposo , Neoplasias Ováricas/metabolismo , Micropartículas Derivadas de Células/metabolismoRESUMEN
Credible assessment methods must be applied to evaluate antiseptics' in vitro activity reliably. Studies indicate that the medium for biofilm culturing should resemble the conditions present at the site of infection. We cultured S. aureus, S. epidermidis, P. aeruginosa, C. albicans, and E. coli biofilms in IVWM (In Vitro Wound Milieu)-the medium reflecting wound milieu-and were compared to the ones cultured in the laboratory microbiological Mueller-Hinton (MH) medium. We analyzed and compared crucial biofilm characteristics and treated microbes with polyhexamethylene biguanide hydrochloride (PHMB), povidone-iodine (PVP-I), and super-oxidized solution with hypochlorites (SOHs). Biofilm biomass of S. aureus and S. epidermidis was higher in IVWM than in MH medium. Microbes cultured in IVWM exhibited greater metabolic activity and thickness than in MH medium. Biofilm of the majority of microbial species was more resistant to PHMB and PVP-I in the IVWM than in the MH medium. P. aeruginosa displayed a two-fold lower MBEC value of PHMB in the IVWM than in the MH medium. PHMB was more effective in the IVWM than in the MH medium against S. aureus biofilm cultured on a biocellulose carrier (instead of polystyrene). The applied improvement of the standard in vitro methodology allows us to predict the effects of treatment of non-healing wounds with specific antiseptics.
Asunto(s)
Antiinfecciosos Locales , Antiinfecciosos Locales/farmacología , Povidona Yodada/farmacología , Staphylococcus aureus , Escherichia coli , Biopelículas , Pseudomonas aeruginosaRESUMEN
In recent years, clinicians and doctors have become increasingly interested in fungal infections, including those affecting the mucous membranes. Vulvovaginal candidiasis (VVC) is no exception. The etiology of this infection remains unexplained to this day, as well as the role and significance of asymptomatic vaginal Candida colonization. There are also indications that in the case of VVC, standard methods of determining drug susceptibility to antifungal drugs may not have a real impact on their clinical effectiveness-which would explain, among other things, treatment failures and relapse rates. The aim of the study was to verify the promising results obtained previously in vitro using standard methods, in a newly developed ex vivo model, using tissue fragments of the mouse vagina. The main goal of the study was to determine whether the selected ultrashort cyclic lipopeptides (USCLs) and their combinations with fluconazole at specific concentrations are equally effective against Candida forming a biofilm directly on the surface of the vaginal epithelium. In addition, the verification was also performed with the use of another model for the study of microorganisms (biofilms) in vitro-the BioFlux system, under microfluidic conditions. The obtained results indicate the ineffectiveness of the tested substances ex vivo at concentrations eradicating biofilm in vitro. Nevertheless, the relatively most favorable and promising results were still obtained in the case of combination therapy-a combination of low concentrations of lipopeptides (mainly linear analogs) with mycostatic fluconazole. Additionally, using BioFlux, it was not possible to confirm the previously obtained results. However, an inhibiting effect of the tested lipopeptides on the development of biofilm under microfluidic conditions was demonstrated. There is an incompatibility between the classic in vitro methods, the newer BioFlux method of biofilm testing, offering many advantages postulated elsewhere, and the ex vivo method. This incompatibility is another argument for the need, on the one hand, to intensify research on the pathomechanism of VVC, and, on the other hand, to verify and maybe modify the standard methods used in the determination of Candida susceptibility.
Asunto(s)
Candidiasis Vulvovaginal , Ratones , Humanos , Femenino , Animales , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Candida albicans , Proyectos Piloto , Fluconazol/farmacología , Biopelículas , Candida , Vagina/microbiología , Modelos Animales de Enfermedad , Antibacterianos/farmacología , Lipopéptidos/farmacología , Lipopéptidos/uso terapéuticoRESUMEN
Staphylococcal biofilms are major causative factors of non-healing wound infections. Their treatment algorithms recommend the use of locally applied antiseptic agents to counteract the spread of infection. The efficacy of antiseptics against biofilm is assessed in vitro by a set of standard quantitative and semi-quantitative methods. The development of software for image processing additionally allowed for the obtainment of quantitative data from microscopic images of biofilm dyed with propidium iodine and SYTO-9 reagents, differentiating dead cells from live ones. In this work, the method of assessment of the impact of antiseptic agents on staphylococcal biofilm in vitro, based on biofilms' processed images, was proposed and scrutinized with regard to clinically relevant antiseptics, polyhexanide, povidone-iodine and hypochlorite. The standard quantitative culturing method was applied to validate the obtained data from processed images. The results indicated significantly higher activity of polyhexanide and povidone-iodine than hypochlorite against staphylococcal biofilm. Taking into account the fact that in vitro results of the efficacy of antiseptic agents against staphylococcal biofilm are frequently applied to back up their use in hospitals and ambulatory units, our work should be considered an important tool; providing reliable, quantitative data in this regard.
Asunto(s)
Antiinfecciosos Locales , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Povidona Yodada/farmacología , Ácido Hipocloroso , Antiinfecciosos Locales/farmacología , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/uso terapéuticoRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening, hard-to-heal infections associated with the presence of a biofilm. Essential oils (EOs) are promising agents to combat pseudomonal infections because of the alleged antimicrobial activity of their volatile fractions and liquid forms. Therefore, the purpose of this paper was to evaluate the antibacterial efficacy of both volatile and liquid phases of seven EOs (thyme, tea tree, basil, rosemary, eucalyptus, menthol mint, lavender) against P. aeruginosa biofilm and planktonic cells with the use of a broad spectrum of analytical in vitro methods. According to the study results, the antibacterial activity of EOs in their liquid forms varied from that of the volatile fractions. Overall, liquid and volatile forms of rosemary EO and tea tree EO displayed significant antibiofilm effectiveness. The outcomes indicate that these particular EOs possess the potential to be used in the therapy of P. aeruginosa infections.
Asunto(s)
Aceites Volátiles , Rosmarinus , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/química , Aceites Volátiles/farmacología , Plancton , Pseudomonas aeruginosa , TéRESUMEN
Regulatory T cells (Tregs) have suppressive functions and play an important role in controlling inflammation and autoimmunity. The migratory capacity of Tregs determines their location and their location determines whether they inhibit the priming of naïve lymphocytes in lymphoid tissues or the effector phase of immune responses at inflamed sites. Tregs generated or expanded in vitro are currently being tested in clinics for the treatment of autoimmune disorders, however, little is known about the factors controlling their migration towards therapeutically relevant locations. In this study, we have modulated Treg dynamics using Toll-like receptor (TLR) agonists. Dynamic imaging with confocal and two-photon microscopy revealed that Tregs generated in vitro and stimulated with P3C (a TLR2 agonist) but not with R848 (a TLR7 agonist) or LPS (a TLR4 agonist) showed enhanced cell migration within splenic white pulp or draining lymph node when transferred into mice intravenously or into the footpad, respectively. In summary, our data demonstrate that Tregs are more motile in response to direct TLR stimulation in particular towards TLR2 signals. This may have implications for efficient clinical Treg induction protocols.
Asunto(s)
Movimiento Celular/inmunología , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 7/inmunología , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Imidazoles/farmacología , Ratones Endogámicos C57BL , Microscopía Confocal/métodos , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 7/agonistasRESUMEN
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have become a global issue for healthcare systems due to their resistance to most ß-lactam antibiotics, frequently accompanied by resistance to other classes of antibiotics. In this work, we analyzed the impact of combined use of rotating magnetic field (RMF) with various classes of antibiotics (ß-lactams, glycopeptides, macrolides, lincosamides, aminoglycosides, tetracyclines, and fluoroquinolones) against nine S. aureus strains (eight methicillin-resistant and one methicillin-sensitive). The results indicated that the application of RMF combined with antibiotics interfering with cell walls (particularly with the ß-lactam antibiotics) translate into favorable changes in staphylococcal growth inhibition zones or in minimal inhibitory concentration values compared to the control settings, which were unexposed to RMF. As an example, the MIC value of cefoxitin was reduced in all MRSA strains by up to 42 times. Apart from the ß-lactams, the reduced MIC values were also found for erythromycin, clindamycin, and tetracycline (three strains), ciprofloxacin (one strain), gentamicin (six strains), and teicoplanin (seven strains). The results obtained with the use of in vitro biofilm model confirm that the disturbances caused by RMF in the bacterial cell walls increase the effectiveness of the antibiotics towards MRSA. Because the clinical demand for new therapeutic options effective against MRSA is undisputable, the outcomes and conclusions drawn from the present study may be considered an important road into the application of magnetic fields to fight infections caused by methicillin-resistant staphylococci.
Asunto(s)
Antibacterianos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Campos Magnéticos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana/métodos , beta-Lactamas/metabolismoRESUMEN
Lipid bilayers are active participants in many crucial biological processes. They can be observed in different phases, liquid and solid, respectively. The liquid phase is predominant in biological systems. The solid phase, both crystalline and gel phases, is under investigation due to its resilience to mechanical stress and tight packing of lipids. The mechanical properties of lipids affect their dynamics, therefore influencing the transformation of cell plasma and the endomembrane. Mechanical properties of lipid bilayers are also an important parameter in the design and production of supramolecular lipid-based drug delivery systems. To this end, in this work, we focused on investigating the effect of solid phases of lipid bilayers on their structural parameters and mechanical properties using theoretical molecular dynamics studies on atomistic models of whole vesicles. Those include area per lipid, membrane thickness, density vesicle profiles, bending rigidity coefficient, and area compressibility. Additionally, the bending rigidity coefficient was measured using the flicker noise spectroscopy. The two approaches produced very similar and consistent results. We showed that, contrary to our expectations, bending rigidity coefficients of solid-ordered bilayers for vesicles decreased with an increase in lipid transition temperature. This tendency was reverse in planar systems. Additionally, we have observed an increase of membrane thickness and area compressibility and a decrease of area per lipid. We hope these results will provide valuable mechanical insight for the behavior in solid phases and differences between spherical and planar confirmations.
RESUMEN
Glucose-derived mannose is a common component of glycoproteins, and its deficiency leads to a severe defect in protein glycosylation and failure in basic cell functions. In this work, we show that mannose metabolism is essential for IFN-γ production by mouse Th1 cells. In addition, we demonstrate that the susceptibility of Th1 cells to glycolysis restriction depends on the activation conditions and that under diminished glycolytic flux, mannose availability becomes the limiting factor for IFN-γ expression. This study unravels a new role for glucose metabolism in the differentiation process of Th1 cells, providing a mechanistic explanation for the importance of glycolysis in immune cell functions.
Asunto(s)
Diferenciación Celular/inmunología , Regulación de la Expresión Génica/inmunología , Glucólisis/inmunología , Interferón gamma/inmunología , Manosa/inmunología , Células TH1/inmunología , Animales , Ratones , Células TH1/citologíaRESUMEN
Alzheimer's disease (AD) is a neurodegenerative disease that results in memory loss and the impairment of cognitive skills. Several mechanisms of AD's pathogenesis were proposed, such as the progressive accumulation of amyloid-ß (Aß) and τ pathology. Nevertheless, the exact neurodegenerative mechanism of the Aß remains complex and not fully understood. This paper proposes an alternative hypothesis of the mechanism based on maintaining the neuron membrane's mechanical balance. The incorporation of Aß decreases the lipid membrane's elastic properties, which eventually leads to the impairment of membrane clustering, disruption of mechanical wave propagation, and change in gamma oscillations. The first two disrupt the neuron's ability to function correctly while the last one decreases sensory encoding and perception enabling. To begin discussing this mechanical-balance hypothesis, we measured the effect of two selected peptides, Aß-40 and Aß-42, as well as their fluorescently labeled modification, on membrane mechanical properties. The decrease of bending rigidity, consistent for all investigated peptides, was observed using molecular dynamic studies and experimental flicker-noise techniques. Additionally, wave propagation was investigated with molecular dynamic studies in membranes with and without incorporated neurodegenerative peptides. A change in membrane behavior was observed in the membrane system with incorporated Aß.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Lípidos de la Membrana/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/química , Encéfalo/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/química , Potenciales de la Membrana , Microscopía Confocal , Simulación de Dinámica Molecular , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismoRESUMEN
Several tissue clearing methods have been developed for three-dimensional imaging of thick specimens. Here, we applied CUBIC and ScaleS approaches to whole-mounted vaginal wall to reveal spatial distribution of γδ T lymphocytes, the key cells engaged in the epithelial homeostasis control and immune surveillance. Both methods rendered the tissue transparent and enabled detection of the green fluorescent protein (GFP)-expressing γδ T cells in vaginal samples of Tcrd-H2BeGFP transgenic mice. Upon additional immunolabeling, however, only CUBIC preserved the GFP signal and allowed for cell localization assessment during the estrous cycle. Using a combination of single- and two-photon microscopy, we found that during the diestrus phase the number of γδ T cells in the vaginal wall increased compared to estrus, while the proportion of cells residing in epithelium and stroma remained constant, irrespective of the cycle phase, and was close to 3:1, respectively. Moreover, the distance from epithelial γδ T cells to laminin-positive basal membrane and collagen-rich stroma also increased in diestrus in spite of thinning of epithelium upon shedding cornified cells. Our data indicate that γδ T cells sense sex hormone fluxes which influence their number and position them closer to the vaginal lumen in the diestrus phase.
Asunto(s)
Genitales Femeninos/inmunología , Imagenología Tridimensional , Linfocitos T , Vagina/inmunología , Animales , Estradiol/farmacología , Femenino , Técnica del Anticuerpo Fluorescente , Genitales Femeninos/citología , Recuento de Linfocitos , Medroxiprogesterona/farmacología , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/citología , Linfocitos T/metabolismo , Vagina/citologíaRESUMEN
The aim of this study was to assess the immobilization pattern of microorganisms characterized by varying cell shapes and sizes (rod-shaped bacteria Lactobacillus delbruecki, spherical-shaped yeast Saccharomyces cerevisiae and hyphae forms of Yarrowia lipolytica) on bacterial cellulose of various material properties. The 'adsorption-incubation' method was used for the purposes of immobilization. The immobilization pattern included adsorption efficiency, ability of the immobilized cells to multiply within the carrier expressed as incubation efficiency and the degree of release of the immobilized cells from the carrier. The efficiency of adsorption and incubation was affected by the morphology of the immobilized cells and increased together with cellulose surface area. For smaller bacterial cells a higher level of loading was obtained on the same surface as compared to larger yeast cells. During incubation, the number of immobilized bacterial and yeast cells increased significantly in comparison to the number of cells adsorbed on the carrier during the adsorption step. Despite the morphological differences between the S. cerevisiae and Y. lipolytica cells, there were no statistically significant differences in the efficiency of adsorption and incubation. It was also revealed that the release ratio values obtained for L. delbruecki and S. cerevisiae increased along with cellulose surface area. Interestingly, Y. lipolytica cells in the pseudohyphae and hyphae forms penetrated deeply into the three-dimensional network of BC nanofibrils which prevented subsequent cell release. It was confirmed that carrier selection must be individually matched to the type of immobilized cells based especially on its porosity-related parameters.
Asunto(s)
Bacterias/química , Células Inmovilizadas/citología , Celulosa/química , Adsorción , Saccharomyces cerevisiae/citología , Yarrowia/citologíaRESUMEN
Bending rigidity coefficient describes propensity of a lipid bilayer to deform. In order to measure the parameter experimentally using flickering noise spectroscopy, the microscopic imaging is required, which necessitates the application of giant unilamellar vesicles (GUV) lipid bilayer model. The major difficulty associated with the application of the model is the statistical character of GUV population with respect to their size and the homogeneity of lipid bilayer composition, if a mixture of lipids is used. In the paper, the bending rigidity coefficient was measured using the fluorescence-enhanced flicker-noise spectroscopy. In the paper, the bending rigidity coefficient was determined for large populations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine vesicles. The quantity of obtained experimental data allows to perform statistical analysis aiming at the identification of the distribution, which is the most appropriate for the calculation of the value of the membrane bending rigidity coefficient. It has been demonstrated that the bending rigidity coefficient is characterized by an asymmetrical distribution, which is well approximated with the gamma distribution. Since there are no biophysical reasons for that we propose to use the difference between normal and gamma fits as a measure of the homogeneity of vesicle population. In addition, the effect of a fluorescent label and types of instrumental setups on determined values has been tested. Obtained results show that the value of the bending rigidity coefficient does not depend on the type of a fluorescent label nor on the type of microscope used.
Asunto(s)
Fluorescencia , Membrana Dobles de Lípidos/química , Glicerilfosforilcolina/química , Fosfatidilcolinas/química , Espectrometría de Fluorescencia , Liposomas Unilamelares/químicaRESUMEN
Lipid bilayer is the main constitutive element of biological membrane, which confines intracellular space. The mechanical properties of biological membranes may be characterized by various parameters including membrane stiffness or membrane bending rigidity, which can be measured using flicker noise spectroscopy. The flicker noise spectroscopy exploits the spontaneous thermal undulations of the membrane. The method is based on the quantitative analysis of a series of microscopic images captured during thermal membrane fluctuations. Thus, measured bending rigidity coefficient depends on the image quality as well as the selection of computational tools for image processing and mathematical model used. In this work scanning and spinning disc confocal microscopies were used to visualize fluctuating membranes of giant unilamellar vesicles. The bending rigidity coefficient was calculated for different acquisition modes, using different fluorescent probes and different image processing methods. It was shown that both imaging approaches gave similar bending coefficient values regardless of acquisition time. Using the developed methodology the effect of fluorescent probe type and aqueous phase composition on the value of the membrane bending rigidity coefficient was measured. Specifically it was found that the bending rigidity coefficient of DOPC bilayer in water is smaller than that determined for POPC membrane. It has been found that the POPC and DOPC bending rigidities coefficient in sucrose solution was lower than that in water. Fluorescence imaging makes possible the quantitative analysis of membrane mechanical properties of inhomogeneous membrane.
Asunto(s)
Colorantes Fluorescentes/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Espectrometría de FluorescenciaRESUMEN
BACKGROUND & AIMS: The lymphatic chemokine CCL21 is required for dendritic cell (DC) migration from tissues to lymph nodes, which helps establish tolerance to foreign yet harmless antigens. We demonstrate that CCL21 is almost completely absent from SAMP1/YitFc (SAMP) mice, which spontaneously develop chronic ileitis that resembles Crohn's disease, and that DC migration is severely impaired in these mice compared with AKR mice (controls). Toll-like receptor agonists like the Toll-like receptor 7 agonist R848 induce DC maturation and mobilization. METHODS: We collected intestinal and other tissues and mesenteric lymph nodes (MLN) from SAMP mice. Expression of CCL21 was measured by quantitative reverse transcription polymerase chain reaction and immunofluorescence analyses; spontaneous and induced migration of DCs were assessed by flow cytometry. We analyzed production of retinoic acid by DCs and their ability to induce development of regulatory T cells. Mice were fed R848 to determine its effects on migration of DCs and development of ileitis in SAMP mice. RESULTS: SAMP mice expressed almost no CCL21 in any tissue tested. Their CD11b(+)CD103(+) DCs were defective in migration from the ileal lamina propria to the MLN. DCs from SAMP mice also had a greatly reduced ability to produce retinoic acid and induce development of regulatory T cells compared with control mice. Young SAMP mice had reduced CCL21 expression and decreased DC migration before developing ileitis. Administration of R848 to adult SAMP mice increased migration of DC to the MLN and development of regulatory T cells there, and reduced the severity of ileitis. CONCLUSIONS: Loss of CCL21 signaling and DC migration is required for development of ileitis in SAMP mice. Reagents such as R848, which activate DC migration to the MLN, may be developed as treatments for patients with Crohn's disease.
Asunto(s)
Movimiento Celular/inmunología , Quimiocina CCL21/inmunología , Enfermedad de Crohn/inmunología , Células Dendríticas/inmunología , Ileítis/inmunología , Ganglios Linfáticos/inmunología , Animales , Movimiento Celular/efectos de los fármacos , Quimiocina CCL21/genética , Células Dendríticas/efectos de los fármacos , Modelos Animales de Enfermedad , Imidazoles/farmacología , Glicoproteínas de Membrana/agonistas , Ratones , Ratones Endogámicos , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 7/agonistasRESUMEN
Recent work has demonstrated that following the clearance of infection a stable population of memory T cells remains present in peripheral organs and contributes to the control of secondary infections. However, little is known about how tissue-resident memory T cells behave in situ and how they encounter newly infected target cells. Here we demonstrate that antigen-specific CD8(+) T cells that remain in skin following herpes simplex virus infection show a steady-state crawling behavior in between keratinocytes. Spatially explicit simulations of the migration of these tissue-resident memory T cells indicate that the migratory dendritic behavior of these cells allows the detection of antigen-expressing target cells in physiologically relevant time frames of minutes to hours. Furthermore, we provide direct evidence for the identification of rare antigen-expressing epithelial cells by skin-patrolling memory T cells in vivo. These data demonstrate the existence of skin patrol by memory T cells and reveal the value of this patrol in the rapid detection of renewed infections at a previously infected site.
Asunto(s)
Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica , Epitelio/inmunología , HumanosRESUMEN
During mouse cytomegalovirus (MCMV) infection, the first wave of type I interferon (IFN-I) production peaks at ≈ 8 h. This IFN-I emanates from splenic stromal cells located in the marginal zone (MZ) and requires B cells that express lymphotoxin. The amount of IFN-I produced at these initial times is at least equivalent in magnitude to that produced later by dendritic cells (≈ 36 to 48 h), but the relative roles of these two IFN-I sources in regulating MCMV defense remain unclear. Here we show that IFN-I produced by MZ stromal cells dramatically restricts the first measurable burst of viral production, which occurs at ≈ 32 h. This primary innate control by IFN-I is partially mediated through the activation of natural killer (NK) cells, which produce gamma interferon in an IFN-I-dependent fashion, and is independent of Ly49H. Strikingly, MCMV production in the spleens of immunocompetent mice never increases at times after 32 h. These results highlight the critical importance of lymphoid-tissue stromal cells in orchestrating the earliest phase of innate defense to MCMV infection, capping replication levels, and blocking spread until infection is ultimately controlled.