RESUMEN
INTRODUCTION: The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant. OBJECTIVES: Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids. METHODS: Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC). RESULTS: The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles. CONCLUSION: These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.
Asunto(s)
Cannabis , Metabolómica , Hojas de la Planta , Cannabis/química , Cannabis/metabolismo , Metabolómica/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Flores/metabolismo , Flores/química , Extractos Vegetales/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Cannabinoides/metabolismo , Cannabinoides/análisis , Simulación del Acoplamiento Molecular , Flavonoides/metabolismo , Flavonoides/análisis , Espectrometría de Masas/métodosRESUMEN
Designing hybrid-based drugs is one promising strategy for developing effective anticancer drugs that explore combination therapy to enhance treatment efficacy, overcome the development of drug resistance, and lower treatment duration. Bisphosphonates and Vitamin D are commonly administered drugs for the treatment of bone diseases and the prevention of bone metastases. Platinum-based and methotrexate are widely used anticancer drugs in clinics. However, their use is hampered by adverse side effects. Hybrid-based compounds containing either bisphosphonate, vitamin D, platinum-based or methotrexate were synthesized and characterized using FTIR, 1H-,31P, 13C-NMR, and UHPLC-HRMS which confirmed their successful synthesis. The hydroxyapatite bone binding assay revealed a promising percentage binding affinity of the bisphosphonate hybrid compounds. In vitro cytotoxicity assays on MCF-7 and HT-29 cell lines revealed a promising cytotoxic effect of hybrid 19 at 50 and 100 µg/mL on HT-29 and hybrid 15 on MCF-7 at 100 µg/mL. Molecular docking and dynamics simulation analysis revealed a binding affinity of -9.70 kcal/mol for hybrid 15 against Human 3 alpha-hydroxysteroid dehydrogenase type 3, showing its capability to inhibit Human 3 alpha-hydroxysteroid dehydrogenase type 3. The Swiss ADME, ProTox-II, GUSAR (General Unrestricted Structure-Activity Relationships), and molecular docking and dynamics studies revealed that these compounds are promising anticancer compounds.
RESUMEN
A Gram-stain-positive, endospore-forming endophytic bacterial strain designated MHSD28T was isolated from surface-sterilized leaves of Dicoma anomala collected from Eisleben, Botlokwa, Limpopo Province, South Africa. The phenotypic and phylogenetic characteristics of strain MHSD28T were consistent with those of members within the Bacillus cereus group. Comparative analysis between this strain and its relatives confirmed that it belongs to this group and forms a monophyletic branch. The digital DNA-DNA hybridization values between strain MHSD28T and its relatives were lower than the 70â% threshold for species delineation. To further determine its phylogenetic position, multi-locus sequence analysis (MLSA) based on five concatenated housekeeping gene (gyrB, atpD, DnaK, rpoB and rpoD) sequences, phenotypic analysis, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) biotyper identification, fatty acid and polar lipid profile analyses were carried out. Phenotypic characterization, MLSA, whole genome sequence based analyses and MALDI-TOF results placed strain MHSD28T within the B. cereus group. The major fatty acids were iso-C15â:â0 and summed feature 3 and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The respiratory quinone was menaquinone-7. The cell-wall peptidoglycan structure included meso-diaminopimelic acid. Considering the above results, strain MHSD28T represents a novel species of the B. cereus group, for which the name Bacillus dicomae sp. nov. is proposed. The type strain is MHSD28T (=BD 2262T=LMG 32287T=CECT 30671T).
Asunto(s)
Asteraceae , Bacillus , Cactaceae , Plantas Medicinales , Bacillus/genética , Bacillus cereus/genética , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de BaseRESUMEN
Background: Pancreatic cancer and colon cancer pose significant challenges in treatment, with poor prognoses. Natural products have long been explored for their potential as anticancer agents. Iso-mukaadial acetate has shown promise in inducing apoptosis in breast and ovarian cancer cells. The objective of this study was to investigate the effect of Iso-mukaadial acetate on pancreatic (MIA-PACA2) and colon (HT29) cancer cell lines. Methods: Pancreatic (MIA-PACA2) cancer cells, colon (HT29) cancer cells, normal embryonic kidney cells (HEK 293), and normal lung cells (MRC5) were cultured and treated with Iso-mukaadial acetate (IMA) for 24 hours. The viability assays were conducted using Alamarblue reagent and a real-time cell viability monitoring system, xCELLigence. The IC50 values were determined, followed by assessments of ATP production, caspase 3/7 activation, mitochondrial function, morphological changes using a light microscope, and gene expression changes via RT-PCR. Results: This study indicates that Iso-mukaadial acetate exhibited concentration-dependent cytotoxic effects, slowing cellular proliferation in both cancer cell lines. Activation of the mitochondrial apoptotic pathway and caspase 3/7 suggests induction of apoptosis. Reduced ATP production and altered gene expression further support its anticancer properties. Morphological changes after treatment with Iso-mukaadial acetate showed apoptotic characteristics which may suggest that apoptosis was induced. Conclusions: According to the results obtained, Iso-mukaadial acetate shows potential as an anticancer agent, evidenced by its effects on cellular viability, mitochondrial function, ATP production, caspase activation, and gene expression in pancreatic and colon cancer cells. These findings highlight its promise for further investigation and potential in the development of therapeutic agents.
RESUMEN
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
RESUMEN
South Africa is rich in diverse medicinal plants, and it is reported to have over 35% of the global Helichrysum species, many of which are utilized in traditional medicine. Various phytochemical studies have offered valuable insights into the chemistry of Helichrysum plants, hinting at bioactive components that define the medicinal properties of the plant. However, there are still knowledge gaps regarding the size and diversity of the Helichrysum chemical space. As such, continuous efforts are needed to comprehensively characterize the phytochemistry of Helichrysum, which will subsequently contribute to the discovery and exploration of Helichrysum-derived natural products for drug discovery. Thus, reported herein is a computational metabolomics work to comprehensively characterize the metabolic landscape of the medicinal herb Helichrysum splendidum, which is less studied. Metabolites were methanol-extracted and analyzed on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Spectral data were mined using molecular networking (MN) strategies. The results revealed that the metabolic map of H. splendidum is chemically diverse, with chemical superclasses that include organic polymers, benzenoids, lipid and lipid-like molecules, alkaloids, and derivatives, phenylpropanoids and polyketides. These results point to a vastly rich chemistry with potential bioactivities, and the latter was demonstrated through computationally assessing the binding of selected metabolites with CDK-2 and CCNB1 anti-cancer targets. Molecular docking results showed that flavonoids (luteolin, dihydroquercetin, and isorhamnetin) and terpenoids (tiliroside and silybin) interact strongly with the CDK-2 and CCNB1 targets. Thus, this work suggests that these flavonoid and terpenoid compounds from H. splendidum are potentially anti-cancer agents through their ability to interact with these proteins involved in cancer pathways and progression. As such, these actionable insights are a necessary step for further exploration and translational studies for H. splendidum-derived compounds for drug discovery.
RESUMEN
Cancer is an enormous burden of disease globally. Today, more people die from cancer than a combination of several diseases. And in females, breast and cervical malignancies remain the most common types. Currently, cervical and breast cancer are the most diagnosed gynecological cancer type amongst black females in the Southern Sahara while amongst males prostate cancer is on the upward trend. With many of them still dependent on medicinal plants as a form of therapy and the need to identify new therapeutic agents, we have identified a commonly used medicinal plant Tulbaghia violacea Harv. commonly known as Itswele lomlambo (Xhosa), wilde knoffel (Afrikaans) and Isihaqa (zulu) to evaluate its anticancer properties at a molecular biology level. In this study, we evaluated the molecular mechanism of T. violacea extracts in regulating cell death in various cancer cell lines. To achieve this, T. violacea was collected, dried before crushing into a fine ground powder. Three organic solvents namely, methanol, hexane, and butanol at 10 g per 100 mL were used as extraction solvents. Each cell line was treated with varying concentrations of the plant extract to identify the half-maximal inhibitory concentration (IC50). The IC 50 was later used to analyse if the extracts were inducing apoptosis using annexin V analysis. Furthermore, the molecular mechanisms by which apoptosis was induced was analysed by qPCR, western blots. All three extracts exhibited anticancer activity with the most cytotoxic being methanol extract. p53 expression was significantly increased in treated cells that correlated with increased caspase activity. The results point to possible activation of apoptosis following treatment with hexane extracts.
Asunto(s)
Amaryllidaceae/química , Antineoplásicos Fitogénicos/farmacología , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Extractos Vegetales/químicaRESUMEN
Retinoblastoma Binding Protein 6 (RBBP6) is a multi-domain protein that uses its ring finger domain to interact with p53 and pRb tumour suppressor genes. The mechanism by which RBBP6 uses to degrade p53 is still unknown; nonetheless it is well known that RBBP6 promotes cell proliferation in several cancers by negatively regulating p53 via its E3 ubiquitin ligase activity. Degradation of p53 by RBBP6 may compromise p53-mediated apoptosis in breast cancer. This study is intended to investigate, the potential applications of RNA interference (RNAi) to block RBBP6 expression, as well as its subsequent effect on cell growth and apoptosis. Our studies indicate that the knockdown of RBBP6 by siRNA modulates p53 gene expression involved in cell death pathways and apoptosis, showing statistically significant gene expression differences. RBBP6 siRNA significantly reduced cell growth compared to the control samples and inhibition of cellular proliferation was observed between 24 and 48h, as shown in the data obtained by real time cell analysis using the xCELLigence system. These results were further confirmed by flow cytometer which showed some apoptotic activity. About 20.7% increase in apoptosis was observed in cells co-treated with RBBP6 siRNA and camptothecin when compared to camptothecin-only whereas in siRBBP6 and staurosporine treated cells there was only an 8.8% increase in apoptosis. These findings suggest that silencing RBBP6 may be a novel strategy to promote camptothecin-induced apoptosis in breast cancer cells.