Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Materials (Basel) ; 16(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36837168

RESUMEN

In this study, a new digital technique for the analysis of the mechanical aperture and contact area of rock fractures under various normal stresses is proposed. The technique requires point cloud data of the upper and lower fracture surfaces, pressure film image data of the fracture, and normal deformation data of the fracture as input data. Three steps of algorithms were constructed using these input data: (1) a primary matching algorithm that considers the shape of the fracture surfaces; (2) a secondary matching algorithm that uses pressure film images; and (3) a translation algorithm that considers the normal deformation of a fracture. The applicability of the proposed technique was investigated using natural fracture specimens sampled at an underground research facility in Korea. In this process, the technique was validated through a comparison with the empirical equation suggested in a previous study. The proposed technique has the advantage of being able to analyze changes in the mechanical aperture and contact area under various normal stresses without multiple experiments. In addition, the change in the contact area on the fracture surface according to the normal stress can be analyzed in detail.

2.
Materials (Basel) ; 13(11)2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521752

RESUMEN

Pore-scale modeling with a reconstructed rock microstructure has become a dominant technique for fluid flow characterization in rock thanks to technological improvements in X-ray computed tomography (CT) imaging. A new method for the construction of a pore channel model from micro-CT image analysis is suggested to improve computational efficiency by simplifying a highly complex pore structure. Ternary segmentation was applied through matching a pore volume experimentally measured by mercury intrusion porosimetry with a CT image voxel volume to distinguish regions denoted as "apparent" and "indistinct" pores. The developed pore channel model, with distinct domains of different pore phases, captures the pore shape dependence of flow in two dimensions and a tortuous flow path in three dimensions. All factors determining these geometric characteristics were identified by CT image analysis. Computation of an interaction flow regime with apparent and indistinct pore domains was conducted using both the Stokes and Brinkman equations. The coupling was successfully simulated and evaluated against the experimental results of permeability derived from Darcy's law. Reasonable agreement was found between the permeability derived from the pore channel model and that estimated experimentally. However, the model is still incapable of accurate flow modeling in very low-permeability rock. Direct numerical simulation in a computational domain with a complex pore space was also performed to compare its accuracy and efficiency with the pore channel model. Both schemes achieved reasonable results, but the pore channel model was more computationally efficient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA