RESUMEN
In this article, we characterized structure and expression of genes encoding the neuropeptide Corazonin (MdCrz) and its putative receptor (MdCrzR) in the House Fly, Musca domestica. The MdCrz gene contains two introns, one within the 5' untranslated region and the other within the open reading frame. The 150-amino-acid precursor consists of an N-terminal signal peptide, and mature Crz followed by Crz-associated peptide (CAP). The CAP region is highly diverged from those of other insect precursors, whereas the mature Crz is identical in other dipteran members. In situ hybridization and immunohistochemistry consistently found a group of three MdCrz-producing neurons in the dorso-lateral protocerebrum, and eight pairs of bi-lateral neurons in the ventral nerve cord in the larvae. In adults, the expression was found exclusively in a cluster of five to seven neurons per brain lobe. Comparable expression patterns observed in other dipteran species suggest conserved regulatory mechanisms of Crz expression and functions during the course of evolution. MdCrzR deduced from the full-length cDNA sequence is a 655-amino acid polypeptide that contains seven trans-membrane (TM) domains and other motifs that are characteristics of Class-A G-protein coupled receptors. Although the TMs and loops between the TMs are conserved in other CrzRs, N-terminal extracellular domain is quite dissimilar. Tissue-specific RT-PCR revealed a high level of MdCrzR expression in the larval salivary glands and a moderate level in the CNS. In adults, the receptor was expressed both in the head and body, suggesting multifunctionality of the Crz signaling system.