Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Microvasc Res ; 128: 103953, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31715125

RESUMEN

The disruption of the blood-brain barrier influences the degree of brain damage and prognosis in cerebral ischemia or other brain diseases accompanied by inflammation. Vascular endothelial growth factor (VEGF) released during brain ischemia or inflammation has been implicated in the breakdown of the blood-brain barrier by increasing endothelial permeability. Saxatilin, a disintegrin-containing RGD motif, has been reported to disaggregate platelets via interactions with platelet integrins and to have a thrombolysis effect. Additionally, the Fc-saxatilin fusion protein reduces vascular leakage in cerebral ischemia in mice. In this study, we show that Fc-saxatilin prevents VEGF-induced permeability in human brain microvascular endothelial cells (HBMECs). The activation of Src and Fak, downstream signaling proteins of VEGF in the induction of endothelial permeability, was inhibited by Fc-saxatilin in HBMECs. The downregulation of a tight junction protein, claudin-5, at the protein and mRNA levels by VEGF was recovered by Fc-saxatilin. Our findings suggest that Fc-saxatilin attenuates VEGF-induced endothelial permeability via the regulation of downstream signaling, and this may contribute to its protective effect against vascular leakage in the ischemic brain.


Asunto(s)
Encéfalo/irrigación sanguínea , Permeabilidad Capilar/efectos de los fármacos , Claudina-5/metabolismo , Desintegrinas/farmacología , Células Endoteliales/efectos de los fármacos , Microvasos/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Uniones Estrechas/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Células Cultivadas , Claudina-5/genética , Células Endoteliales/metabolismo , Activación Enzimática , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Microvasos/metabolismo , Transducción de Señal , Uniones Estrechas/metabolismo , Familia-src Quinasas/metabolismo
2.
Cells ; 10(2)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671182

RESUMEN

IgLON5 is a cell adhesion protein belonging to the immunoglobulin superfamily and has important cellular functions. The objective of this study was to determine the role played by IgLON5 during myogenesis. We found IgLON5 expression progressively increased in C2C12 myoblasts during transition from the adhesion to differentiation stage. IgLON5 knockdown (IgLON5kd) cells exhibited reduced cell adhesion, myotube formation, and maturation and reduced expressions of different types of genes, including those coding for extracellular matrix (ECM) components (COL1a1, FMOD, DPT, THBS1), cell membrane proteins (ITM2a, CDH15), and cytoskeletal protein (WASP). Furthermore, decreased IgLON5 expression in FMODkd, DPTkd, COL1a1kd, and ITM2akd cells suggested that IgLON5 and these genes mutually control gene expression during myogenesis. IgLON5 immunoneutralization resulted in significant reduction in the protein level of myogenic markers (MYOD, MYOG, MYL2). IgLON5 expression was higher in the CTX-treated gastrocnemius mice muscles (day 7), which confirmed increase expression of IgLON5 during muscle. Collectively, these results suggest IgLON5 plays an important role in myogenesis, muscle regeneration, and that proteins in ECM and myoblast membranes form an interactive network that establishes an essential microenvironment that ensures muscle stem cell survival.


Asunto(s)
Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Mioblastos/citología , Animales , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/genética
3.
Mol Neurobiol ; 56(8): 5835-5843, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30684219

RESUMEN

Skeletal muscle is a highly complex, heterogeneous tissue that serves a multitude of biological functions in living organisms. With the advent of methods, such as microarrays, transcriptome analysis, and proteomics, studies have been performed at the genome level to gain insight of changes in the expression profiles of genes during different stages of muscle development and of associated diseases. In the present study, a database was conceived for the straightforward retrieval of information on genes involved in skeletal muscle formation, neuromuscular diseases (NMDs), ageing, and neurodegenerative disorders (NDs). The resulting database named NeuroMuscleDB ( http://yu-mbl-muscledb.com/NeuroMuscleDB ) is the result of a wide literature survey, database searches, and data curation. NeuroMuscleDB contains information of genes in Homo sapiens, Mus musculus, and Bos Taurus, and their promoter sequences and specified roles at different stages of muscle development and in associated myopathies. The database contains information on ~ 1102 genes, 6030 mRNAs, and 5687 proteins, and embedded analytical tools that can be used to perform tasks related to gene sequence usage. The authors believe NeuroMuscleDB provides a platform for obtaining desired information on genes related to myogenesis and their associations with various diseases (NMDs, ageing, and NDs). NeuroMuscleDB is freely available on the web at http://yu-mbl-muscledb.com/NeuroMuscleDB and supports all major browsers.


Asunto(s)
Envejecimiento/genética , Bases de Datos Genéticas , Desarrollo de Músculos/genética , Enfermedades Neuromusculares/genética , Animales , Secuencia de Bases , Bovinos , Humanos , Ratones
4.
Cells ; 8(12)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817149

RESUMEN

Skeletal muscle, the largest part of the total body mass, influences energy and protein metabolism as well as maintaining homeostasis. Herein, we demonstrate that during murine muscle satellite cell and myoblast differentiation, transthyretin (TTR) can exocytose via exosomes and enter cells as TTR- thyroxine (T4) complex, which consecutively induces the intracellular triiodothyronine (T3) level, followed by T3 secretion out of the cell through the exosomes. The decrease in T3 with the TTR level in 26-week-old mouse muscle, compared to that in 16-week-old muscle, suggests an association of TTR with old muscle. Subsequent studies, including microarray analysis, demonstrated that T3-regulated genes, such as FNDC5 (Fibronectin type III domain containing 5, irisin) and RXRγ (Retinoid X receptor gamma), are influenced by TTR knockdown, implying that thyroid hormones and TTR coordinate with each other with respect to muscle growth and development. These results suggest that, in addition to utilizing T4, skeletal muscle also distributes generated T3 to other tissues and has a vital role in sensing the intracellular T4 level. Furthermore, the results of TTR function with T4 in differentiation will be highly useful in the strategic development of novel therapeutics related to muscle homeostasis and regeneration.


Asunto(s)
Diferenciación Celular , Desarrollo de Músculos , Mioblastos/metabolismo , Prealbúmina/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Línea Celular , Células Cultivadas , Fibronectinas/genética , Fibronectinas/metabolismo , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/citología , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Mioblastos/citología , Prealbúmina/genética , Receptor gamma X Retinoide/genética , Receptor gamma X Retinoide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA