RESUMEN
Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high-contrast "off-to-on" activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components-incorporated afterglow nanosensor (MANS) is developed for the superoxide-responsive activatable afterglow imaging of cisplatin-induced kidney injury. A multifunctional iridium complex (Ir-OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen-generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir-OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir-OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide-responsive "off-to-on" activatable afterglow luminescence for periods longer than 11 min after the termination of pre-excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin-induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.
Asunto(s)
Lesión Renal Aguda , Superóxidos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico por imagen , Animales , Cisplatino , Ratones , Imagen Molecular , Imagen Óptica/métodosRESUMEN
The function of high-mobility group box 1 (HMGB1) varies according to its location. However, the translocation mechanism behind HMGB1 remains unclear. We hypothesize that type 2 helper T cell (Th2) cytokines are involved in the translocation of HMGB1 in the upper airway epithelium. We investigated the mechanism behind HMGB1 translocation using Th2 cytokine stimulation and examined the clinical significance of HMGB1 translocation in allergic rhinitis (AR). Cytoplasmic and extracellular HMGB1 were increased in AR. Inhibiting HMGB1 translocation with glycyrrhizic acid (GA) decreased the level of antigen-specific immunoglobulin E (IgE), the degree of Periodic Acid-Schiff (PAS), and Sirius Red staining in the murine model. The in vivo reactive oxygen species (ROS) level in the nasal mucosa was higher in the mice with AR than in the controls. Th2 cytokine-induced up-regulation of the ROS and translocation of HMGB1 by Th2 cytokines was dependent on the generated ROS. The ROS level also increased in the murine model. We suggest that the Th2 cytokine-dual oxidase (DUOX)2-ROS-HMGB1 translocation axis is important in AR pathogenesis.
Asunto(s)
Oxidasas Duales/metabolismo , Proteína HMGB1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rinitis Alérgica/patología , Adulto , Animales , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Células Th2/metabolismoRESUMEN
Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.