Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Neurosci ; 11(3): 354-9, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18223647

RESUMEN

Many lines of evidence indicate that GABA and GABA(A) receptors make important contributions to human sleep regulation. Pharmacological manipulation of these receptors has differential effects on sleep onset and sleep maintenance insomnia. Here we show that sleep is regulated by GABA in Drosophila and that a mutant GABA(A) receptor, Rdl(A302S), specifically decreases sleep latency. The drug carbamazepine (CBZ) has the opposite effect on sleep; it increases sleep latency as well as decreasing sleep. Behavioral and physiological experiments indicated that Rdl(A302S) mutant flies are resistant to the effects of CBZ on sleep latency and that mutant RDL(A302S) channels are resistant to the effects of CBZ on desensitization, respectively. These results suggest that this biophysical property of the channel, specifically channel desensitization, underlies the regulation of sleep latency in flies. These experiments uncouple the regulation of sleep latency from that of sleep duration and suggest that the kinetics of GABA(A) receptor signaling dictate sleep latency.


Asunto(s)
Química Encefálica/genética , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores de GABA-A/metabolismo , Sueño/genética , Ácido gamma-Aminobutírico/metabolismo , Animales , Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Química Encefálica/efectos de los fármacos , Carbamazepina/farmacología , Células Cultivadas , Proteínas de Drosophila/efectos de los fármacos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Masculino , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Tiempo de Reacción/genética , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/genética , Sueño/efectos de los fármacos , Factores de Tiempo
2.
J Neurobiol ; 63(3): 235-54, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15751025

RESUMEN

Drosophila Shaw encodes a voltage-insensitive, slowly activating, noninactivating K(+) current. The functional and developmental roles of this channel are unknown. In this study, we use a dominant transgenic strategy to investigate Shaw function and describe a second member of the Shaw family, Shawl. In situ hybridization showed that the two Shaw family genes, Shaw and Shawl, have largely nonoverlapping expression patterns in embryos. Shaw is expressed mainly in excitable cells of the CNS and PNS of late embryos. Shawl is expressed in many nonexcitable cell types: ubiquitously in embryos until the germband extends, then transiently in the developing CNS and PNS, becoming restricted to progressively smaller subsets of the CNS. Ectopic full-length and truncated Shaw localize differently within neurons, and produce uneclosed small pupae and adults with unfurled wings and softened cuticle. This phenotype was mapped to the crustacean cardioactive peptide (CCAP)-neuropeptide circuit. Widespread expression of Shaw in the nervous system results in a reduction in body mass, ether-induced shaking, and lethality. Expression of full-length Shaw had more extreme phenotypic consequences and caused earlier lethality than expression of truncated Shaw in a given GAL4 pattern. Whole cell recordings from ventral ganglion motor neurons expressing the truncated Shaw protein suggest that a major role of Shaw channels in these cells is to contribute to the resting potential.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Familia de Multigenes , Canales de Potasio/genética , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Mutagénesis , Canales de Potasio/biosíntesis , Canales de Potasio Shaw
3.
J Neurophysiol ; 91(5): 2353-65, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14695352

RESUMEN

We have used dye fills and electrophysiological recordings to identify and characterize a cluster of motor neurons in the third instar larval ventral ganglion. This cluster of neurons is similar in position to the well-studied embryonic RP neurons. Dye fills of larval dorsomedial neurons demonstrate that individual neurons within the cluster can be reproducibly identified by observing their muscle targets and bouton morphology. The terminal targets of these five neurons are body wall muscles 6/7, 1, 14, and 30 and the intersegmental nerve (ISN) terminal muscles (1, 2, 3, 4, 9, 10, 19, 20). All cells except the ISN neuron, which has a type Is ending, display type Ib boutons. Two of these neurons appear to be identical to the embryonic RP3 and aCC cells, which define the most proximal and distal innervations within a hemisegment. The targets of the other neurons in the larval dorsomedial cluster do not correspond to embryonic targets of the neurons in the RP cluster, suggesting rewiring of this circuit during early larval stages. Electrophysiological studies of the five neurons in current clamp revealed that type Is neurons have a longer delay in the appearance of the first spike compared with type Ib neurons. Genetic, biophysical, and pharmacological studies in current and voltage clamp show this delay is controlled by the kinetics and voltage sensitivity of inactivation of a current whose properties suggest that it may be the Shal I(A) current. The combination of genetic identification and whole cell recording allows us to directly explore the cellular substrates of neural and locomotor behavior in an intact system.


Asunto(s)
Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Drosophila/fisiología , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , 4-Aminopiridina/farmacología , Animales , Axones/fisiología , Axones/ultraestructura , Sistema Nervioso Central/ultraestructura , Dendritas/fisiología , Dendritas/ultraestructura , Electrofisiología , Femenino , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Larva , Locomoción/fisiología , Proteínas Luminiscentes , Masculino , Potenciales de la Membrana/fisiología , Músculos/inervación , Músculos/fisiología , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA