Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2400380, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564784

RESUMEN

Thermal annealing (TA) of colloidal quantum dot (CQD) films is considered an important process for recent high-performing CQD solar cells (SCs) due to its beneficial effects on CQD solids, including enhanced electrical conductivity, denser packing of CQD films, and the removal of organic residues and solvents. However, the conventional TA for CQDs, which requires several  minutes, leads to hydroxylation and oxidation on the CQD surface, resulting in the formation of trap states and a subsequent decline in SC performance. To address these challenges, this study introduces a flashlight annealing (FLA) technique that significantly reduces the annealing time to the millisecond scale. Through the FLA approach, it successfully suppressed hydroxylation and oxidation, resulting in decreased trap states within the CQD solids while simultaneously preserving their charge transport properties. As a result, CQD SCs treated with FLA exhibited a notable improvement, achieving an open-circuit voltage of 0.66 V compared to 0.63 V in TA-treated devices, leading to an increase in power conversion efficiency from 12.71% to 13.50%.

2.
Small ; 20(17): e2307089, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185784

RESUMEN

Composites comprising copper-doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnS:Cu-PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnS:Cu phosphor induced by the triboelectricity generated at the ZnS:Cu microparticle-PDMS matrix interface. ZnS:Cu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnS:Cu microparticles. The ML of ZnS:Cu-PDMS composites varies on changing the coating material, exhibiting an intensity that is proportional to the amount of interfacial triboelectricity generated in the system. Finally, based on these findings, a mechanism that explains the ML of phosphor-polymer elastic composites (interfacial triboelectric field-driven alternating-current EL model) is proposed in this study. It is believed that understanding this mechanism will enable the development of new materials (beyond ZnS:Cu-PDMS systems) with bright and durable ML.

3.
Small ; 19(36): e2301161, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127870

RESUMEN

Cdx Hg1- x Se/HgS/Cdy Zn1- y S core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000-1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II Cdx Hg1- x Se/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap Cdy Zn1- y S outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40-80%) and aqueous (20-70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs. Moreover, they maintain bright PL in a photocurable resin (QY 40%, peak wavelength ≈ 1300 nm), enabling the fabrication of SWIR-luminescent composites of diverse morphology and concentration. These composites are used to localize controlled amounts of SWIR QDs inside artificial (Intralipid) and porcine tissues and quantitatively evaluate the applicability as luminescent probes for deep-tissue imaging.

4.
Sensors (Basel) ; 23(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37766031

RESUMEN

Wrist-based respiratory rate (RR) measurement during sleep faces accuracy limitations. This study aimed to assess the accuracy of the RR estimation function during sleep based on the severity of obstructive sleep apnea (OSA) using the Samsung Galaxy Watch (GW) series. These watches are equipped with accelerometers and photoplethysmography sensors for RR estimation. A total of 195 participants visiting our sleep clinic underwent overnight polysomnography while wearing the GW, and the RR estimated by the GW was compared with the reference RR obtained from the nasal thermocouple. For all participants, the root mean squared error (RMSE) of the average overnight RR and continuous RR measurements were 1.13 bpm and 1.62 bpm, respectively, showing a small bias of 0.39 bpm and 0.37 bpm, respectively. The Bland-Altman plots indicated good agreement in the RR measurements for the normal, mild, and moderate OSA groups. In participants with normal-to-moderate OSA, both average overnight RR and continuous RR measurements achieved accuracy rates exceeding 90%. However, for patients with severe OSA, these accuracy rates decreased to 79.45% and 75.8%, respectively. The study demonstrates the GW's ability to accurately estimate RR during sleep, even though accuracy may be compromised in patients with severe OSA.

5.
Small ; 16(45): e2002460, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079485

RESUMEN

Quantum dots (QDs) are emerging photovoltaic materials that display exclusive characteristics that can be adjusted through modification of their size and surface chemistry. However, designing a QD-based optoelectronic device requires specialized approaches compared with designing conventional bulk-based solar cells. In this paper, design considerations for QD thin-film solar cells are introduced from two different viewpoints: optics and electrics. The confined energy level of QDs contributes to the adjustment of their band alignment, enabling their absorption characteristics to be adapted to a specific device purpose. However, the materials selected for this energy adjustment can increase the light loss induced by interface reflection. Thus, management of the light path is important for optical QD solar cell design, whereas surface modification is a crucial issue for the electrical design of QD solar cells. QD thin-film solar cell architectures are fabricated as a heterojunction today, and ligand exchange provides suitable doping states and enhanced carrier transfer for the junction. Lastly, the stability issues and methods on QD thin-film solar cells are surveyed. Through these strategies, a QD solar cell study can provide valuable insights for future-oriented solar cell technology.

6.
Nano Lett ; 18(7): 4417-4423, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29912564

RESUMEN

Colloidal quantum dots (CQDs) are promising solution-processed infrared-absorbing materials for optoelectronics. In these applications, it is crucial to replace the electrically insulating ligands used in synthesis to form strongly coupled quantum dot solids. Recently, solution-phase ligand-exchange strategies have been reported that minimize the density of defects and the polydispersity of CQDs; however, we find herein that the new ligands exhibit insufficient chemical reactivity to remove original oleic acid ligands completely. This leads to low CQD packing and correspondingly low electronic performance. Here we report an acid-assisted solution-phase ligand-exchange strategy that, by enabling efficient removal of the original ligands, enables the synthesis of densified CQD arrays. Our use of hydroiodic acid simultaneously facilitates high CQD packing via proton donation and CQD passivation through iodine. We demonstrate highly packed CQD films with a 2.5 times increased carrier mobility compared with prior exchanges. The resulting devices achieve the highest infrared photon-to-electron conversion efficiencies (>50%) reported in the spectral range of 0.8 to 1.1 eV.

7.
J Am Chem Soc ; 140(36): 11378-11386, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30113834

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2RR) produces diverse chemical species. Cu clusters with a judiciously controlled surface coordination number (CN) provide active sites that simultaneously optimize selectivity, activity, and efficiency for CO2RR. Here we report a strategy involving metal-organic framework (MOF)-regulated Cu cluster formation that shifts CO2 electroreduction toward multiple-carbon product generation. Specifically, we promoted undercoordinated sites during the formation of Cu clusters by controlling the structure of the Cu dimer, the precursor for Cu clusters. We distorted the symmetric paddle-wheel Cu dimer secondary building block of HKUST-1 to an asymmetric motif by separating adjacent benzene tricarboxylate moieties using thermal treatment. By varying materials processing conditions, we modulated the asymmetric local atomic structure, oxidation state and bonding strain of Cu dimers. Using electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) experiments, we observed the formation of Cu clusters with low CN from distorted Cu dimers in HKUST-1 during CO2 electroreduction. These exhibited 45% C2H4 faradaic efficiency (FE), a record for MOF-derived Cu cluster catalysts. A structure-activity relationship was established wherein the tuning of the Cu-Cu CN in Cu clusters determines the CO2RR selectivity.

8.
Pancreatology ; 18(1): 22-28, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29246689

RESUMEN

OBJECTIVES: This study aims to evaluate the diagnostic value of magnetic resonance cholangiopancreatography (MRCP) in detecting common bile duct (CBD) stones in acute biliary pancreatitis (ABP). METHODS: The medical records of patients presenting with ABP from January 2008 to July 2013 were reviewed to assess the value of MRCP in detecting CBD stones in ABP. Endoscopic retrograde cholangiopancreatography (ERCP) was used as the reference standard to assess the diagnostic yield of MRCP in detecting choledocholithiasis. When ERCP was unavailable, intraoperative cholangiography or clinical follow-up was used as the reference standard. RESULTS: Seventy-eight patients who underwent MRCP were diagnosed with ABP, and thirty of the 78 patients (38%) were confirmed to have CBD stones per the study protocol. The sensitivity of MRCP in detecting CBD stones in ABP was 93.3% compared to 66.7% for abdominal CT (P < 0.008). The overall accuracy of MRCP in detecting choledocholithiasis was 85.9% compared to 74.0% for abdominal CT (P < 0.041). The area under the receiver operating characteristic curve (AUC) of MRCP in detecting CBD stones was 0.882, which was more accurate than the AUC of 0.727 for abdominal CT (P = 0.039). In 38 patients who underwent ERCP, the sensitivity and negative predictive value of MRCP in detecting CBD stones were both 100% regardless of the dilatation of the bile duct (≥7 mm versus < 7 mm). CONCLUSION: MRCP is an effective, noninvasive modality to detect CBD stones in ABP and can help identify patients who require ERCP.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Pancreatocolangiografía por Resonancia Magnética , Coledocolitiasis/diagnóstico por imagen , Cálculos Biliares/diagnóstico por imagen , Pancreatitis/diagnóstico por imagen , Enfermedad Aguda , Coledocolitiasis/complicaciones , Humanos , Pancreatitis/complicaciones , Estudios Retrospectivos
9.
Nano Lett ; 15(9): 5709-15, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26261876

RESUMEN

We report a synergistic effect of flame and chemical reduction methods to maximize the efficiency of solar water splitting in transferred TiO2 nanotube (TNT) arrays on a transparent conducting oxide (TCO) substrate. The flame reduction method (>1000 °C) leads to few oxygen vacancies in the anatase TNT arrays, but it exhibits unique advantages for excellent interfacial characteristics between transferred TNT arrays and TCO substrates, which subsequently induce a cathodic on-set potential shift and sharp photocurrent evolution. By contrast, the employed chemical reduction method for TNT arrays/TCO gives rise to an abrupt increase in photocurrent density, which results from the efficient formation of oxygen vacancies in the anatase TiO2 phase, but a decrease in charge transport efficiency with increasing chemical reduction time. We show that flame reduction followed by chemical reduction could significantly improve the saturation photocurrent density and interfacial property of TNT arrays/TCO photoanodes simultaneously without mechanical fracture via the synergistic effects of coreducing methods.

10.
J Am Chem Soc ; 137(8): 3017-23, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25662739

RESUMEN

Mitochondria are organelles that are readily susceptible to temperature elevation. We selectively delivered a coumarin-based fluorescent iron oxide nanoparticle, Mito-CIO, to the mitochondria. Upon 740 nm laser irradiation, the intracellular temperature of HeLa cells was elevated by 2.1 °C within 5 min when using Mito-CIO, and the treatment resulted in better hyperthermia and a more elevated cytotoxicity than HeLa cells treated with coumarin iron oxide (CIO), which was missing the mitochondrial targeting unit. We further confirmed these results in a tumor xenograft mouse model. To our knowledge, this is the first report of a near-infrared laser irradiation-induced hyperthermic particle targeted to mitochondria, enhancing the cytotoxicity in cancer cells. Our present work therefore may open a new direction in the development of photothermal therapeutics.


Asunto(s)
Hipertermia Inducida/métodos , Rayos Infrarrojos/uso terapéutico , Mitocondrias/metabolismo , Nanomedicina/métodos , Animales , Transporte Biológico , Transformación Celular Neoplásica , Cumarinas/química , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Células HeLa , Humanos , Espacio Intracelular/metabolismo , Ratones , Ratones Endogámicos BALB C , Nanopartículas/metabolismo
11.
Adv Mater ; 35(4): e2203430, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35700966

RESUMEN

The power conversion efficiency of CsPbI3 perovskite quantum dot (PQD) solar cells shows increase from 10.77% to 16.2% in a short period owing to advances in material and device design for solar cells. However, the device stability of CsPbI3 PQD solar cells remains poor in ambient conditions, which requires an in-depth understanding of the degradation mechanisms of CsPbI3 PQDs solar cells in terms of both inherent material properties and device characteristics. Along with this analysis, advanced strategies to overcome poor device stability must be conceived. In this review, fundamental mechanisms that cause the degradation of CsPbI3 PQD solar cells are discussed from the material property and device viewpoints. In addition, based on detailed insights into degradation mechanisms in CsPbI3 PQD solar cells, various strategies are introduced to improve the stability of CsPbI3 PQD solar cells. Finally, future perspectives and challenges are presented to achieve highly durable CsPbI3 PQD solar cells. The investigation of the degradation mechanisms and the stability enhancement strategies can pave the way for the commercialization of CsPbI3 PQD solar cells.

12.
Adv Sci (Weinh) ; 10(23): e2301793, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271856

RESUMEN

The ligand exchange procedure of CsPbI3 perovskite quantum dots (PQDs) enables the fabrication of thick and conductive PQD solids that act as a photovoltaic absorber for solution-processed thin-film solar cells. However, the ligand-exchanged CsPbI3 PQD solids suffer from deterioration in photovoltaic performance and ambient stability due to the surface traps, such as uncoordinated Pb2+ sites on the PQD surface, which are generated after the conventional ligand exchange process using ionic short-chain ligands dissolved in polar solvents. Herein, a facile surface stabilization is demonstrated that can simultaneously improve the photovoltaic performance and ambient stability of CsPbI3 PQD photovoltaic absorber using covalent short-chain triphenylphosphine oxide (TPPO) ligands dissolved in a nonpolar solvent. It is found that the TPPO ligand can be covalently bound to uncoordinated Pb2+ sites and the nonpolar solvent octane can completely preserve the PQD surface components. Owing to their synergetic effects, the CsPbI3 PQD photovoltaic absorber stabilized using the TPPO ligand solution dissolved in octane exhibit higher optoelectrical properties and ambient stability than the control absorber. Consequently, CsPbI3 PQD solar cells composed of PQD photovoltaic absorbers fabricated via surface stabilization strategy provide an improved power conversion efficiency of 15.4% and an enhanced device stability.

13.
Sleep Health ; 8(5): 420-428, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35817700

RESUMEN

OBJECTIVES: To characterize and evaluate the estimation of oxygen saturation measured by a wrist-worn reflectance pulse oximeter during sleep. METHODS: Ninety-seven adults with sleep disturbances were enrolled. Oxygen saturation was simultaneously measured using a reflectance pulse oximeter (Galaxy Watch 4 [GW4], Samsung, South Korea) and a transmittance pulse oximeter (polysomnography) as a reference. The performance of the device was evaluated using the root mean squared error (RMSE) and coverage rate. Additionally, GW4-derived oxygen desaturation index (ODI) was compared with the apnea-hypopnea index (AHI) derived from polysomnography. RESULTS: The GW4 had an overall RMSE of 2.3% and negligible bias of -0.2%. A Bland-Altman density plot showed good agreement between the GW4 and the reference pulse oximeter. RMSEs were 1.65 ± 0.57%, 1.76 ± 0.65%, 1.93 ± 0.54%, and 2.93 ± 1.71% for normal (n = 18), mild (n = 21), moderate (n = 23), and severe obstructive sleep apnea (n = 35), respectively. The data rejection rate was 26.5%, which was caused by fluctuations in contact pressure and the discarding of data less than 70% of saturation. A GW4-ODI ≥5/h had the highest ability to predict AHI ≥15/h with sensitivity, specificity, accuracy, and area under the curve of 89.7%, 64.1%, 79.4%, and 0.908, respectively. CONCLUSIONS: This study evaluated the estimation of oxygen saturation by the GW4 during sleep. This device complies with both Food and Drug Administration and International Organization for Standardization standards. Further improvements in the algorithms of wearable devices are required to obtain more accurate and reliable information about oxygen saturation measurements.


Asunto(s)
Oximetría , Muñeca , Estados Unidos , Adulto , Humanos , Polisomnografía , Sueño , Oxígeno
14.
Nanomicro Lett ; 14(1): 204, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251125

RESUMEN

Perovskite quantum dots (PQDs) have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs. However, they exhibit low moisture stability at room humidity (20-30%) owing to many surface defect sites generated by inefficient ligand exchange process. These surface traps must be re-passivated to improve both charge transport ability and moisture stability. To address this issue, PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation. Conventional organic semiconductors are typically low-dimensional (1D and 2D) and prone to excessive self-aggregation, which limits chemical interaction with PQDs. In this work, we designed a new 3D star-shaped semiconducting material (Star-TrCN) to enhance the compatibility with PQDs. The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation. The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI3-PQDs via reduced surface trap states and suppressed moisture penetration. As a result, the resultant devices not only achieve remarkable device stability over 1000 h at 20-30% relative humidity, but also boost power conversion efficiency up to 16.0% via forming a cascade energy band structure.

15.
Cancers (Basel) ; 14(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36428626

RESUMEN

Neuroblastoma (NB) is a pediatric tumor of the peripheral nervous system. Approximately 80% of relapsed NB show RAS-MAPK pathway mutations that activate ERK, resulting in the promotion of cell proliferation and drug resistance. Ulixertinib, a first-in-class ERK-specific inhibitor, has shown promising antitumor activity in phase 1 clinical trials for advanced solid tumors. Here, we show that ulixertinib significantly and dose-dependently inhibits cell proliferation and colony formation in different NB cell lines, including PDX cells. Transcriptomic analysis revealed that ulixertinib extensively inhibits different oncogenic and neuronal developmental pathways, including EGFR, VEGF, WNT, MAPK, NGF, and NTRK1. The proteomic analysis further revealed that ulixertinib inhibits the cell cycle and promotes apoptosis in NB cells. Additionally, ulixertinib treatment significantly sensitized NB cells to the conventional chemotherapeutic agent doxorubicin. Furthermore, ulixertinib potently inhibited NB tumor growth and prolonged the overall survival of the treated mice in two different NB mice models. Our preclinical study demonstrates that ulixertinib, either as a single agent or in combination with current therapies, is a novel and practical therapeutic approach for NB.

16.
Langmuir ; 27(23): 14647-53, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-21988282

RESUMEN

TiO(2) electrodes, sensitized with the N719 dye at high immersion temperatures during the sensitization process, were found to have large fractions of weakly bound N719 on the electrode surface, which resulted in dye aggregation and decreased device longevity. These disadvantages were ameliorated using a low-temperature stearic acid (SA)-assisted anchoring method described here. The activation energy (ΔE(NS)(++)) and relative fraction of strongly bound N719 were twice as large as the respective values obtained without the use of SA. Slowing of adsorption, both by thermal means and through SA-mediated processes, effectively controlled the binding mode of N719 on the surface of TiO(2). The resulting sensitized electrodes displayed enhanced device longevity and improved generation of photoinduced electrons.


Asunto(s)
Colorantes/química , Electrones , Nanopartículas/química , Compuestos Organometálicos/química , Termodinámica , Tiocianatos/química , Titanio/química , Procesos Fotoquímicos , Propiedades de Superficie
17.
Adv Mater ; 32(7): e1906497, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31930771

RESUMEN

Colloidal quantum dots (CQDs) are promising materials for photovoltaic (PV) applications owing to their size-tunable bandgap and solution processing. However, reports on CQD PV stability have been limited so far to storage in the dark; or operation illuminated, but under an inert atmosphere. CQD PV devices that are stable under continuous operation in air have yet to be demonstrated-a limitation that is shown here to arise due to rapid oxidation of both CQDs and surface passivation. Here, a stable CQD PV device under continuous operation in air is demonstrated by introducing additional potassium iodide (KI) on the CQD surface that acts as a shielding layer and thus stands in the way of oxidation of the CQD surface. The devices (unencapsulated) retain >80% of their initial efficiency following 300 h of continuous operation in air, whereas CQD PV devices without KI lose the amount of performance within just 21 h. KI shielding also provides improved surface passivation and, as a result, a higher power conversion efficiency (PCE) of 12.6% compared with 11.4% for control devices.

18.
Nat Commun ; 11(1): 103, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900394

RESUMEN

Control over carrier type and doping levels in semiconductor materials is key for optoelectronic applications. In colloidal quantum dots (CQDs), these properties can be tuned by surface chemistry modification, but this has so far been accomplished at the expense of reduced surface passivation and compromised colloidal solubility; this has precluded the realization of advanced architectures such as CQD bulk homojunction solids. Here we introduce a cascade surface modification scheme that overcomes these limitations. This strategy provides control over doping and solubility and enables n-type and p-type CQD inks that are fully miscible in the same solvent with complete surface passivation. This enables the realization of homogeneous CQD bulk homojunction films that exhibit a 1.5 times increase in carrier diffusion length compared with the previous best CQD films. As a result, we demonstrate the highest power conversion efficiency (13.3%) reported among CQD solar cells.

19.
Sci Rep ; 9(1): 129, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644425

RESUMEN

Peptidoglycan-binding protein-modified magnetic nanobeads (PGBP-MNBs) were prepared for efficient magnetic capturing of Staphylococcus aureus (S. aureus), which is associated with sepsis, using the binding affinity of PGBP for the peptidoglycan (PG) layer on S. aureus. These PGBP-MNBs can simply capture S. aureus in plasma within 1 hr or even 15 min. Importantly, they also can capture various types of Gram-positive bacteria, such as Bacillus cereus and methicillin-resistant and methicillin-susceptible S. aureus (MRSA and MSSA). We believe that PGBP-based systems will be used to develop diagnostic systems for Gram-positive bacteria-related diseases.


Asunto(s)
Separación Inmunomagnética/métodos , Sepsis/microbiología , Staphylococcus aureus/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Bacterias Grampositivas/aislamiento & purificación , Humanos , Peptidoglicano/metabolismo , Unión Proteica , Sepsis/sangre , Staphylococcus aureus/química
20.
Adv Mater ; 31(17): e1805580, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30860292

RESUMEN

Colloidal nanocrystals combine size- and facet-dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size- and facet-tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger-diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small-diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short-wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow-bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (≈47 meV) and Urbach tail (≈29 meV). This approach provides a ≈50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a ≈70% external quantum efficiency at their excitonic peak.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA