Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753510

RESUMEN

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Asunto(s)
Proteínas de Neoplasias , Multimerización de Proteína , Molécula de Interacción Estromal 1 , Humanos , Sitios de Unión , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Simulación de Dinámica Molecular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Unión Proteica , Dominios Proteicos , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/química
2.
Glycobiology ; 19(11): 1163-75, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19506293

RESUMEN

Effective representation and characterization of biosynthetic pathways of glycosylation can be facilitated by mathematical modeling. This paper describes the expansion of a previously developed detailed model for N-linked glycosylation with the further application of the model to analyze MALDI-TOF mass spectra of human N-glycans in terms of underlying cellular enzyme activities. The glycosylation reaction network is automatically generated by the model, based on the reaction specificities of the glycosylation enzymes. The use of a molecular mass cutoff and a network pruning method typically limits the model size to about 10,000 glycan structures. This allows prediction of the complete glycan profile and its abundances for any set of assumed enzyme concentrations and reaction rate parameters. A synthetic mass spectrum from model-calculated glycan profiles is obtained and enzyme concentrations are adjusted to bring the theoretically calculated mass spectrum into agreement with experiment. The result of this process is a complete characterization of a measured glycan mass spectrum containing hundreds of masses in terms of the activities of 19 enzymes. In addition, a complete annotation of the mass spectrum in terms of glycan structure is produced, including the proportions of isomers within each peak. The method was applied to mass spectrometric data of normal human monocytes and monocytic leukemia (THP1) cells to derive glycosyltransferase activity changes underlying the differences in glycan structure between the normal and diseased cells. Model predictions could lead to a better understanding of the changes associated with disease states, identification of disease-associated biomarkers, and bioengineered glycan modifications.


Asunto(s)
Glicosiltransferasas/metabolismo , Leucemia/enzimología , Modelos Biológicos , Monocitos/química , Monocitos/enzimología , Polisacáridos/química , Polisacáridos/metabolismo , Conformación de Carbohidratos , Interpretación Estadística de Datos , Glicosilación , Glicosiltransferasas/química , Humanos , Leucemia/metabolismo , Programas Informáticos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Chem Biol ; 13(12): 1265-75, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17185222

RESUMEN

Short-chain fatty acid (SCFA)-carbohydrate hybrid molecules that target both histone deacetylation and glycosylation pathways to achieve sugar-dependent activity against cancer cells are described in this article. Specifically, n-butyrate esters of N-acetyl-D-mannosamine (But4ManNAc, 1) induced apoptosis, whereas corresponding N-acetyl-D-glucosamine (But4GlcNAc, 2), D-mannose (But5Man, 3), or glycerol (tributryin, 4) derivatives only provided transient cell cycle arrest. Western blots, reporter gene assays, and cell cycle analysis established that n-butyrate, when delivered to cells via any carbohydrate scaffold, functioned as a histone deacetylase inhibitor (HDACi), upregulated p21WAF1/Cip1 expression, and inhibited proliferation. However, only 1, a compound that primed sialic acid biosynthesis and modulated the expression of a different set of genes compared to 3, ultimately killed the cells. These results demonstrate that the biological activity of butyrate can be tuned by sugars to improve its anticancer properties.


Asunto(s)
Butiratos/farmacología , Ciclo Celular/efectos de los fármacos , Hexosaminas/farmacología , Profármacos/química , Profármacos/farmacología , Apoptosis/efectos de los fármacos , Butiratos/química , Butiratos/metabolismo , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Glicosilación , Células HeLa , Hexosaminas/química , Hexosaminas/metabolismo , Humanos , Células Jurkat , Estructura Molecular , Transducción de Señal
4.
ACS Chem Biol ; 3(4): 230-40, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18338853

RESUMEN

Chemical biology studies, exemplified by metabolic glycoengineering experiments that employ short chain fatty acid (SCFA)-hexosamine monosaccharide hybrid molecules, often suffer from off-target effects. Here we demonstrate that systematic structure-activity relationship (SAR) studies can deconvolute multiple biological activities of SCFA-hexosamine analogues by demonstrating that triacylated monosaccharides, including both n-butyrate- and acetate-modified ManNAc analogues, had dramatically different activities depending on whether the free hydroxyl group was at the C1 or C6 position. The C1-OH (hemiacetal) analogues enhanced growth inhibition in MDA-MB-231 human breast cancer cells and suppressed expression of MUC1, which are attractive properties for an anticancer agent. By contrast, C6-OH analogues supported high metabolic flux into the sialic acid pathway with negligible growth inhibition or toxicity, which are desirable properties for glycan labeling in healthy cells. Importantly, these SAR were general, applying to other hexosamines ( e.g., GlcNAc) and non-natural sugar "scaffolds" ( e.g., ManNLev). From a practical standpoint, the ability to separate toxicity from flux will facilitate the use of MOE analogues for cancer treatment and glycomics applications, respectively. Mechanistically, these findings overturn the premise that the bioactivities of SCFA-monosaccharide hybrid molecules result from their hydrolysis products ( e.g., n-butyrate, which acts as a histone deacetylase inhibitor, and ManNAc, which activates sialic acid biosynthesis); instead the SAR establish that inherent properties of partially acylated hexosamines supersede the cellular responses supported by either the acyl or monosaccharide moieties.


Asunto(s)
Ácidos Grasos Volátiles/química , Hexosaminas/química , Hexosaminas/metabolismo , Mucina-1/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Hexosaminas/toxicidad , Humanos , Estructura Molecular , Polisacáridos/química , Estereoisomerismo , Relación Estructura-Actividad , Regulación hacia Arriba
5.
J Med Chem ; 51(24): 8135-47, 2008 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19053749

RESUMEN

Per-butanoylated N-acetyl-D-mannosamine (Bu(4)ManNAc), a SCFA-hexosamine cancer drug candidate with activity manifest through intact n-butyrate-carbohydrate linkages, reduced the invasion of metastatic MDA-MB-231 breast cancer cells unlike per-butanoylated-D-mannose (Bu(5)Man), a clinically tested compound that did not alter cell mobility. To gain molecular-level insight, therapeutic targets implicated in metastasis were investigated. The active compound Bu(4)ManNAc reduced both MUC1 expression and MMP-9 activity (via down-regulation of CXCR4 transcription), whereas "inactive" Bu(5)Man had counterbalancing effects on these oncogenes. This divergent impact on transcription was linked to interplay between HDACi activity (held by both Bu(4)ManNAc and Bu(5)Man) and NF-kappaB activity, which was selectively down-regulated by Bu(4)ManNAc. Overall, these results establish a new therapeutic end point (control of invasion) for SCFA-hexosamine hybrid molecules, define relative contributions of molecular players involved in cell mobility and demonstrate that Bu(4)ManNAc breaks the confounding link between beneficial HDACi activity and the simultaneous deleterious activation of NF-kappaB often found in epigenetic drug candidates.


Asunto(s)
Antineoplásicos/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Química Farmacéutica/métodos , Ácidos Grasos/química , Hexosaminas/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Epigénesis Genética , Hexosaminas/síntesis química , Hexosaminas/farmacología , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Modelos Biológicos , FN-kappa B/genética , Metástasis de la Neoplasia , Receptores CXCR4/metabolismo
6.
Biochemistry ; 45(22): 6773-82, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16734414

RESUMEN

Channels and transporters of the ClC family serve a variety of physiological functions. Understanding of their gating and transport mechanisms remains incomplete, with disagreement over the extent of protein conformational change involved. Using site-directed fluorescence labeling, we probe ClC-ec1, a prokaryotic ClC, for transport-related structural rearrangements. We specifically label cysteines introduced at several positions in the R helix of ClC-ec1 with AlexaFluor 488, an environment-sensitive fluorophore, and demonstrate that the labeled mutants show H+/Cl- transport activity indistinguishable from that of the wild-type protein. At each position that we examined we observe fluorescence changes upon acidification over the same pH range that is known to activate transport. The fluorescence change is also sensitive to Cl- concentration; furthermore, the Cl- and H+ dependencies are coupled as would be expected if the fluorescence change reflected a conformational change required for transport. Together, the results suggest that the changes in fluorescence report protein conformational changes underlying the transport process. Labeled transporters mutated to remove a glutamate critical to proton-coupled chloride transport retain pH-dependent fluorescence changes, suggesting that multiple residues confer pH dependence on the transport mechanism. These results have implications for models of transport and gating in ClC channels and transporters.


Asunto(s)
Canales de Cloruro/química , Proteínas de Escherichia coli/química , Modelos Biológicos , Transporte Biológico , Canales de Cloruro/genética , Cisteína/química , Proteínas de Escherichia coli/genética , Fluorescencia , Concentración de Iones de Hidrógeno , Maleimidas/química , Mutación , Conformación Proteica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA