Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612859

RESUMEN

Chronic sinusitis with nasal polyps (CRSwNP) is one of the most common chronic inflammatory diseases, and involves tissue remodeling. One of the key mechanisms of tissue remodeling is the epithelial-mesenchymal transition (EMT), which also represents one of the pathophysiological processes of CRS observed in CRSwNP tissues. To date, many transcription factors and forms of extracellular stimulation have been found to regulate the EMT process. However, it is not known whether gangliosides, which are the central molecules of plasma membranes, involved in regulating signal transmission pathways, are involved in the EMT process. Therefore, we aimed to determine the role of gangliosides in the EMT process. First, we confirmed that N-cadherin, which is a known mesenchymal marker, and ganglioside GD3 were specifically expressed in CRSwNP_NP tissues. Subsequently, we investigated whether the administration of TNF-α to human nasal epithelial cells (hNECs) resulted in the upregulation of ganglioside GD3 and its synthesizing enzyme, ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 1 (ST8Sia1), and the consequently promoted inflammatory processes. Additionally, the expression of N-cadherin, Zinc finger protein SNAI2 (SLUG), and matrix metallopeptidase 9 (MMP-9) were elevated, but that of E-cadherin, which is known to be epithelial, was reduced. Moreover, the inhibition of ganglioside GD3 expression by the siRNA or exogenous treatment of neuraminidase 3 (NEU 3) led to the suppression of inflammation and EMT. These results suggest that gangliosides may play an important role in prevention and therapy for inflammation and EMT.


Asunto(s)
Inflamación , Pólipos Nasales , Humanos , Gangliósidos , Cadherinas/genética , Células Epiteliales , Transición Epitelial-Mesenquimal
2.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791186

RESUMEN

Malignant melanoma represents a form of skin cancer characterized by a bleak prognosis and heightened resistance to traditional therapies. Quercetin has demonstrated notable anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects across various cancer types. However, the intricate relationship between quercetin's anti-cancer properties and ganglioside expression in melanoma remains incompletely understood. In this study, quercetin manifests specific anti-proliferative, anti-migratory, and cell-cycle arrest effects, inducing mitochondrial dysfunction and apoptosis in two melanoma cancer cell lines. This positions quercetin as a promising candidate for treating malignant melanoma. Moreover, our investigation indicates that quercetin significantly reduces the expression levels of ganglioside GD3 and its synthetic enzyme. Notably, this reduction is achieved through the inhibition of the FAK/paxillin/Akt signaling pathway, which plays a crucial role in cancer development. Taken together, our findings suggest that quercetin may be a potent anti-cancer drug candidate for the treatment of malignant melanoma.


Asunto(s)
Apoptosis , Gangliósidos , Melanoma , Mitocondrias , Quercetina , Quercetina/farmacología , Humanos , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/patología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Gangliósidos/metabolismo , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
3.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37530518

RESUMEN

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Asunto(s)
Productos Agrícolas , Poliploidía , Secuencia de Bases , Mapeo Cromosómico/métodos , Mutación , Fenotipo , Productos Agrícolas/genética , Genoma de Planta/genética , Edición Génica
4.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298765

RESUMEN

Various proteins introduced into living modified organism (LMO) crops function in plant defense mechanisms against target insect pests or herbicides. This study analyzed the antifungal effects of an introduced LMO protein, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Agrobacterium sp. strain CP4 (CP4-EPSPS). Pure recombinant CP4-EPSPS protein, expressed in Escherichia coli, inhibited the growth of human and plant fungal pathogens (Candida albicans, C. tropicalis, C. krusei, Colletotrichum gloeosporioides, Fusarium solani, F. graminearum, and Trichoderma virens), at minimum inhibitory concentrations (MICs) that ranged from 62.5 to 250 µg/mL. It inhibited fungal spore germination as well as cell proliferation on C. gloeosporioides. Rhodamine-labeled CP4-EPSPS accumulated on the fungal cell wall and within intracellular cytosol. In addition, the protein induced uptake of SYTOX Green into cells, but not into intracellular mitochondrial reactive oxygen species (ROS), indicating that its antifungal action was due to inducing the permeability of the fungal cell wall. Its antifungal action showed cell surface damage, as observed from fungal cell morphology. This study provided information on the effects of the LMO protein, EPSPS, on fungal growth.


Asunto(s)
Antifúngicos , Fosfatos , Humanos , Antifúngicos/farmacología , Plantas Modificadas Genéticamente/metabolismo , Fosfatos/farmacología , 3-Fosfoshikimato 1-Carboxiviniltransferasa/metabolismo , Hongos/metabolismo , Proteínas Recombinantes/farmacología , Óxido Nítrico Sintasa
5.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830075

RESUMEN

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Gangliósidos/biosíntesis , Células Madre Mesenquimatosas/enzimología , Nucleósido Difosfato Quinasas NM23/farmacología , Neuronas/enzimología , Sialiltransferasas/antagonistas & inhibidores , Animales , Humanos , Sialiltransferasas/metabolismo , Porcinos , Porcinos Enanos
6.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183071

RESUMEN

Mesenchymal stem cells, also known as multipotent stromal progenitor cells, can differentiate into cells of mesodermal lineage. Gangliosides are sialic acid-conjugated glycosphingolipids that are believed to regulate cell differentiation and several signaling molecules. These molecules are localized in glycosphingolipid-enriched microdomains on the cell surface and are regulated by glycosphingolipid composition. Transforming growth factor-beta (TGF-ß) signaling plays a critical role in chondrogenic differentiation. However, the role of gangliosides in chondrogenesis is not understood. In this study, the relationship between the ganglioside GM3 and TGF-ß activation, during chondrogenic differentiation, was investigated using an aggregate culture of human synovial membrane-derived mesenchymal stem cells. We showed that the gangliosides GM3 and GD3 were expressed after the chondrogenic differentiation of hSMSC aggregates. To test whether GM3 affected the chondrogenic differentiation of hSMSC aggregates, we used GM3 treatment during chondrogenic differentiation. The results showed that the group treated with 5 µM GM3 had higher expression of chondrogenic specific markers, increased toluidine blue, and safranin O staining, and increased accumulation of glycosaminoglycans compared with the untreated group. Furthermore, GM3 treatment enhanced TGF-ß signaling via SMAD 2/3 during the chondrogenic differentiation of hSMSC aggregates. Taken together, our results suggested that GM3 may be useful in developing therapeutic agents for cell-based articular cartilage regeneration in articular cartilage disease.


Asunto(s)
Diferenciación Celular , Condrocitos/metabolismo , Gangliósido G(M3)/farmacología , Células Madre Mesenquimatosas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Células Cultivadas , Condrocitos/citología , Condrogénesis , Glicosaminoglicanos/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Transducción de Señal , Proteínas Smad/metabolismo , Membrana Sinovial/citología , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
7.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171878

RESUMEN

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.


Asunto(s)
Fibrosis/terapia , Inflamación/terapia , Células Madre Mesenquimatosas/metabolismo , Adipocitos/citología , Animales , Diferenciación Celular , Condrocitos/citología , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Medicina Regenerativa/métodos
8.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079309

RESUMEN

Overexpression of human epidermal growth factor receptor type 2 (HER2) is considered as a prognostic factor of breast cancer, which is positively associated with recurrence when cancer metastasizes to the lymph nodes. Here, we expressed the single variable domain on a heavy chain (VHH) form of anti-HER2 camelid single domain antibody in tobacco plants and compared its in vitro anticancer activities with the anti-HER2 full size antibody. The gene expression cassette containing anti-HER2 camelid single domain antibody VHH fused to human IgG Fc region with KDEL endoplasmic reticulum (ER) (VHH-FcK) was transferred into the tobacco plant via the Agrobacterium-mediated transformation. The transformants were screened with polymerase chain reaction and Western blot analyses. Enzyme-linked immunosorbent assay (ELISA) confirmed the binding of the purified anti-HER2 VHH-FcK to the HER2-positive breast cancer cell line, SK-BR-3. Migration assay results confirmed anticancer activity of the plant-derived anticancer camelid single chain antibody. Taken together, we confirmed the possibility of using anti-HER2 VHH-FcK as a therapeutic anticancer agent, which can be expressed and assembled and purified from a plant expression system as an alternative antibody production system.


Asunto(s)
Antineoplásicos/inmunología , Neoplasias de la Mama/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Nicotiana/genética , Nicotiana/metabolismo , Receptor ErbB-2/inmunología , Animales , Antineoplásicos/farmacología , Mama , Camélidos del Nuevo Mundo , Línea Celular Tumoral , Movimiento Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoglobulina G/inmunología , Recurrencia Local de Neoplasia , Planticuerpos , Plantas Modificadas Genéticamente/genética , Trastuzumab
9.
Int J Mol Sci ; 21(22)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233448

RESUMEN

In recent decades, many studies on the treatment and prevention of pancreatic cancer have been conducted. However, pancreatic cancer remains incurable, with a high mortality rate. Although mouse models have been widely used for preclinical pancreatic cancer research, these models have many differences from humans. Therefore, large animals may be more useful for the investigation of pancreatic cancer. Pigs have recently emerged as a new model of pancreatic cancer due to their similarities to humans, but no pig pancreatic cancer cell lines have been established for use in drug screening or analysis of tumor biology. Here, we established and characterized an immortalized miniature pig pancreatic cell line derived from primary pancreatic cells and pancreatic cancer-like cells expressing K-rasG12D regulated by the human PTF1A promoter. Using this immortalized cell line, we analyzed the gene expression and phenotypes associated with cancer cell characteristics. Notably, we found that acinar-to-ductal transition was caused by K-rasG12D in the cell line constructed from acinar cells. This may constitute a good research model for the analysis of acinar-to-ductal metaplasia in human pancreatic cancer.


Asunto(s)
Páncreas/metabolismo , Neoplasias Pancreáticas/genética , Lesiones Precancerosas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Línea Celular , Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Páncreas/patología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Transducción de Señal/genética , Porcinos , Porcinos Enanos
10.
Reproduction ; 158(6): 543-554, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31652418

RESUMEN

The developmental competence of in vitro-matured oocytes is still lower than that of the in vivo-matured oocytes due to precocious meiotic resumption and inappropriate cytoplasmic maturation. Although numerous efforts have been attempted to accomplish better in vitro maturation (IVM) condition, only limited progress has been achieved. Thus, a current study was conducted to examine the effects of 6-diazo-5-oxo-l-norleucine (DON, an inhibitor of hyaluronan synthesis) during the first half period of IVM on nuclear/cytoplasmic maturation of porcine oocytes and subsequent embryonic development. Based on the observation of the nucleus pattern, metaphase II (MII) oocyte production rate in 1 µM DON group was significantly higher than other groups at 44 h of IVM. The 1 µM of DON was suggested to be optimal for porcine IVM and was therefore used for further investigation. Meiotic arrest effect of DON was maximal at 6 h of IVM, which was supported by the maintenance of significantly higher intra-oocyte cAMP level. In addition, increased pERK1/2 levels and clear rearrangement of cortical granules in membrane of MII oocytes matured with DON provided the evidence for balanced meiosis progression between nuclear and cytoplasmic maturation. Subsequently, DON significantly improved blastocyst formation rate, total cell numbers, and cellular survival in blastocysts after parthenogenetic activation, in vitro fertilization, and somatic cell nuclear transfer. Altogether, our results showed for the first time that 1 µM DON can be used to increase the yield of developmentally competent MII oocytes by synchronizing nuclear/cytoplasmic maturation, and it subsequently improves embryo developmental competence.


Asunto(s)
Núcleo Celular/fisiología , Citoplasma/fisiología , Diazooxonorleucina/farmacología , Desarrollo Embrionario/efectos de los fármacos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Meiosis , Oocitos/citología , Animales , Antibióticos Antineoplásicos/farmacología , Núcleo Celular/efectos de los fármacos , Citoplasma/efectos de los fármacos , Femenino , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Transferencia Nuclear , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Embarazo , Porcinos
11.
Int J Mol Sci ; 21(1)2019 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-31877897

RESUMEN

Gangliosides are sialic acid-containing glycosphingolipids, which are the most abundant family of glycolipids in eukaryotes. Gangliosides have been suggested to be important lipid molecules required for the control of cellular procedures, such as cell differentiation, proliferation, and signaling. GD1a is expressed in interstitial cells during ovarian maturation in mice and exogenous GD1a is important to oocyte maturation, monospermic fertilization, and embryonic development. In this context, GM1 is known to influence signaling pathways in cells and is important in sperm-oocyte interactions and sperm maturation processes, such as capacitation. GM3 is expressed in the vertebrate oocyte cytoplasm, and exogenously added GM3 induces apoptosis and DNA injury during in vitro oocyte maturation and embryogenesis. As a consequence of this, ganglioside GT1b and GM1 decrease DNA fragmentation and act as H2O2 inhibitors on germ cells and preimplantation embryos. This review describes the functional roles of gangliosides in spermatozoa, oocytes, and early embryonic development.


Asunto(s)
Blastocisto/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Gangliósido G(M3)/farmacología , Oocitos/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Blastocisto/metabolismo , Secuencia de Carbohidratos , Femenino , Gangliósido G(M3)/química , Gangliósido G(M3)/metabolismo , Masculino
12.
Int J Mol Sci ; 19(11)2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30384504

RESUMEN

Bisphenol A (BPA) is synthetic organic compound that exhibits estrogen-like properties and it induces mitochondrial superoxide production. Melatonin (Mela) protects against BPA-mediated cell damage and apoptosis. However, the antioxidative effects of Mela against BPA-induced superoxide production in porcine oocytes are still not known. In this study, we investigated the antioxidative effects of Mela against BPA-derived superoxide on oocyte maturation in pigs. To investigate the effects of the superoxide specific scavenger, Mito-TEMPO, on porcine oocyte maturation in response to BPA exposure apoptosis proteins, we treated the oocytes with Mito-TEMPO (0.1 µM) after pre-treating them with BPA (75 µM) for 22 h. As expected, the reduction in meiotic maturation and cumulus cell expansion of cumulus-oocyte-complexes (COCs) in the BPA (75 µM) treated group was recovered (p < 0.01) by treatment with Mito-TEMPO (0.1 µM). An increase in the levels of mitochondrial apoptotic proteins (AIF, cleaved Cas 3 and cleaved Parp1) in response to BPA-induced damage was also reduced by Mito-TEMPO treatment in porcine COCs. Interestingly, we confirmed the positive effects of Mela with respect to superoxide production upon BPA exposure during oocyte maturation and also confirmed the reduction in mitochondrial apoptosis in Mela (0.1 µM)-treated porcine COCs. These results provide evidence for the first time that antioxidative effects of Mela on BPA-derived superoxide improve porcine oocyte maturation.


Asunto(s)
Antioxidantes/farmacología , Compuestos de Bencidrilo/farmacología , Melatonina/farmacología , Mitocondrias/metabolismo , Oocitos/metabolismo , Fenoles/farmacología , Superóxidos/metabolismo , Animales , Femenino , Proteínas Mitocondriales/metabolismo , Porcinos
13.
J Reprod Dev ; 62(3): 249-55, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26860251

RESUMEN

Gangliosides are key lipid molecules required for the regulation of cellular processes such as proliferation, differentiation, and cell signaling, including signaling of epidermal growth factor receptor (EGFR). Epidermal growth factor (EGF) has long been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes. However, there is no report on the direct effect of ganglioside GD1a in porcine oocyte maturation. In this study, we first investigated a functional link between GD1a and meiotic maturation during in vitro maturation (IVM) of porcine embryos. Moreover, we confirmed the effect of exogenous GD1a treatment on blastocyst development, quality, and fertilization rate in early embryonic development. First, we observed that the protein level of ST3GAL2, a GD1a synthesizing enzyme, significantly increased (P < 0.01) in cumulus-oocyte-complexes (COCs) during IVM progress. The proportion of arrested germinal vesicles (GV) increased in oocytes treated with EGF+GD1a (41.6 ± 1.5%) at the IVM I stage. Upon completion of meiotic maturation, the proportion of metaphase II (M II) was significantly higher (P < 0.05) in the EGF+GD1a (89.9 ± 3.6%) treated group. After IVF, the percentage of penetrated oocytes was significantly higher (P < 0.05) in the EGF+GD1a (89.1 ± 2.3%) treated group than in the control group. Furthermore, exogenous GD1a treatment improved the developmental competence and quality of blastocysts during preimplantation embryo development stage. These results suggest that ganglioside GD1a may play an important role in IVM mechanisms of porcine maturation capacity. Furthermore, our findings will be helpful for better promoting the embryo development and blastocyst quality in pigs.


Asunto(s)
Blastocisto/citología , Gangliósido G(M1)/análogos & derivados , Oocitos/citología , Animales , Apoptosis , Núcleo Celular/metabolismo , Células Cultivadas , Fase de Segmentación del Huevo , Células del Cúmulo/citología , Desarrollo Embrionario , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Femenino , Fertilización , Gangliósido G(M1)/fisiología , Meiosis , Metafase , Ovario/metabolismo , Sialiltransferasas/metabolismo , Porcinos , beta-Galactosida alfa-2,3-Sialiltransferasa
14.
Mar Drugs ; 12(9): 4898-911, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25255129

RESUMEN

Seafoods and seaweeds represent some of the most important reservoirs of new therapeutic compounds for humans. Seaweed has been shown to have several biological activities, including anticancer activity. This review focuses on colorectal and breast cancers, which are major causes of cancer-related mortality in men and women. It also describes various compounds extracted from a range of seaweeds that have been shown to eradicate or slow the progression of cancer. Fucoidan extracted from the brown algae Fucus spp. has shown activity against both colorectal and breast cancers. Furthermore, we review the mechanisms through which these compounds can induce apoptosis in vitro and in vivo. By considering the ability of compounds present in seaweeds to act against colorectal and breast cancers, this review highlights the potential use of seaweeds as anticancer agents.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Algas Marinas/química , Animales , Femenino , Humanos , Masculino
15.
Int J Mol Sci ; 15(11): 21105-19, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25405740

RESUMEN

We have generated the transgenic Tabaco plants expressing multiple monoclonal antibody (mAb) CO7-1A × BR55 by cross-pollinating with mAb CO17-1A and mAb BR55. We have demonstrated the anti-cancer effect of plant-derived multiple mAb CO17-1A × BR55. We find that co-treatment of colorectal mAbs (anti-epithelial cellular adhesion molecule (EpCAM), plant-derived monoclonal antibody (mAb(P)) CO17-1A and mAb(P) CO17-1A × BR55) with RAW264.7 cells significantly inhibited the cell growth in SW620 cancer cells. In particular, multi mAb(P) CO17-1A × BR55 significantly and efficiently suppressed the growth of SW620 cancer cells compared to another mAbs. Apoptotic death-positive cells were significantly increased in the mAb(P) CO17-1A × BR55-treated. The mAb(P) CO17-1A × BR55 treatment significantly decreased the expression of B-Cell lymphoma-2 (BCl-2), but the expression of Bcl-2-associated X protein (Bax), and cleaved caspase-3 were markedly increased. In vivo, the mAb(P) CO17-1A × BR55 significantly and efficiently inhibited the growth of colon tumors compared to another mAbs. The apoptotic cell death and inhibition of pro-apoptotic proteins expression were highest by treatment with mAb(P) CO17-1A × BR55. In addition, the mAb(P) CO17-1A × BR55 significantly inhibited the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in cancer cells and tumors. Therefore, this study results suggest that multiple mAb(P) CO17-1A × BR55 has a significant effect on apoptosis-mediated anticancer by suppression of ERK1/2 phosphorylation in colon cancer compared to another mAbs. In light of these results, further clinical investigation should be conducted on mAb(P) CO17-1A × BR55 to determine its possible chemopreventive and/or therapeutic efficacy against human colon cancer.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos de Neoplasias/inmunología , Neoplasias Colorrectales/terapia , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Animales , Anticuerpos Monoclonales/genética , Antígenos de Neoplasias/genética , Línea Celular , Línea Celular Tumoral , Colon/inmunología , Colon/patología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Humanos , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos BALB C , Fosforilación , Plantas Modificadas Genéticamente/genética , Recto/inmunología , Recto/patología , Nicotiana/genética
16.
Biotechnol Lett ; 35(12): 2031-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24078119

RESUMEN

An epithelial cell adhesion molecule (EpCAM) was selectively expressed in human colorectal carcinoma. Treatment with plant-derived anti-EpCAM mAb (mAbP CO17-1A) and RAW264.7 cells inhibited cell growth in the human colorectal cancer cell line SW620. In SW620 treated with mAbP CO17-1A and RAW264.7 cells, expression of p53 and p21 increased, whereas the expression of G1 phase-related proteins, cyclin D1, CDK4, cyclin E, and CDK2, decreased, similar to mammalian-derived mAb (mAbM) CO17-1A. Similar to mAbM CO17-1A, treatment with mAbP CO17-1A and RAW264.7 cell decreased the expression of anti-apoptotic protein, Bcl-2, but the expression of pro-apoptotic proteins Bax, TNF-α, caspase-3, caspase-6, caspase-8 and caspase-9, increased. Cells treated with mAbP CO17-1A and RAW264.7 cells expressed metastasis-related gangliosides, GM1 and GD1a, similar to mAbM CO17-1A. These results suggest that mAbP CO17-1A is as effective on anti-cancer activity as mAbM CO17-1A.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Neoplasias del Colon/metabolismo , Gangliósidos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas de Plantas/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/farmacología
17.
Discov Oncol ; 14(1): 36, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36991237

RESUMEN

Malignant melanoma is a skin cancer with poor prognosis and high resistance to conventional treatment. 7,8-dihydroxyflavone (7,8-DHF) has shown anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects in several types of cancer. However, the relationship between ganglioside expression and the anti-cancer effects of 7,8-DHF in melanoma is not fully understood. In the present study, 7,8-DHF exhibits specific anti-proliferation, anti-migration, and G2/M phase cell-cycle arrest effects on both melanoma cancer cell lines, and induces mitochondrial dysfunction and apoptosis, making it a potent candidate for anti-melanoma treatment. Furthermore, we confirmed that 7,8-DHF significantly reduces the expression levels of ganglioside GD3 and its synthase, which are known to be closely involved in carcinogenesis. Taken together, our findings suggest that 7,8-DHF may be a potent anti-cancer drug candidate for the treatment of malignant melanoma.

18.
Biol Reprod ; 87(1): 8, 1-11, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22539678

RESUMEN

The coupling of autophagy and endoplasmic reticulum (ER) stress has been implicated in a variety of biological processes; however, little is known regarding the involvement of the autophagy/ER stress pathway in early embryogenesis or the underlying mechanism(s). Here, we showed that the developmental competence of in vitro-produced (IVP) bovine embryos was highly dependent on the autophagy/ER stress balance. Although relative abundances of autophagy-associated gene transcripts, including LC3, Atg5, and Atg7 transcripts, were high in oocytes and throughout the early stages of preattachment development, extensive autophagosome formation was only detected in fertilized embryos. Using an inducer and inhibitor of autophagy, we showed that transient elevation of autophagic activity during early preattachment development greatly increased the blastocyst development rate, trophectoderm cell numbers, and blastomere survival; these same parameters were reduced by both inhibition and prolonged induction of autophagy. Interestingly, the induction of autophagy reduced ER stress and associated damage, while the developmental defects in autophagy-inhibited embryos were significantly alleviated by ER stress inhibitor treatment, indicating that autophagy is a negative regulator of ER stress in early embryos. Collectively, these results suggest that early embryogenesis of IVP bovine embryos depends on an appropriate balance between autophagy and ER stress. These findings may increase our understanding of important early developmental events by providing compelling evidence concerning the tight association between autophagy and ER stress, and may contribute to the development of strategies for the production of IVP bovine blastocysts with high developmental competence.


Asunto(s)
Autofagia/fisiología , Desarrollo Embrionario/fisiología , Estrés del Retículo Endoplásmico/fisiología , Animales , Autofagia/genética , Blastómeros/citología , Blastómeros/metabolismo , Bovinos , Recuento de Células , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Desarrollo Embrionario/genética , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Trofoblastos/citología , Trofoblastos/metabolismo , Enzimas Activadoras de Ubiquitina/genética
19.
J Biomed Biotechnol ; 2012: 364240, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22675251

RESUMEN

The tumor-associated antigen GA733 is a cell-surface glycoprotein highly expressed in colorectal carcinomas. In this study, 3 recombinant genes were constructed as follows: GA733 tagged to the ER retention sequence KDEL (GA733K), GA733 fused to the immunoglobulin Fc fragment (GA733-Fc), and GA733-Fc fused to the ER retention sequence (GA733-FcK). Agrobacterium-mediated transformation was used to generate transgenic plants expressing recombinant genes. The presence of transgenes was confirmed by genomic PCR. Western blot, confocal immunofluorescence, and sandwich ELISA showed the expression of recombinant proteins. The stability, flexibility, and bioactivity of recombinant proteins were analyzed and demonstrated through N-glycosylation analysis, animal trials, and sera ELISA. Our results suggest that the KDEL retained proteins in ER with oligomannose glycan structure and enhanced protein accumulation level. The sera of mice immunized with GA733-FcK purified from plants contained immunoglobulins which were at least as efficient as the mammalian-derived GA733-Fc at recognizing human colorectal cancer cell lines. Thus, a plant system can be used to express the KDEL fusion protein with oligomannose glycosylation, and this protein induces an immune response which is comparable to non-KDEL-tagged, mammalian-derived proteins.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Vacunas contra el Cáncer/metabolismo , Moléculas de Adhesión Celular/biosíntesis , Neoplasias Colorrectales/terapia , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/química , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Ensayo de Inmunoadsorción Enzimática , Molécula de Adhesión Celular Epitelial , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Datos de Secuencia Molecular , Oligopéptidos/genética , Plantas Modificadas Genéticamente/genética , Polisacáridos/análisis , Polisacáridos/química , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Nicotiana/genética , Nicotiana/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Br J Nutr ; 108(1): 39-45, 2012 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-22018138

RESUMEN

The aim of the present study was to investigate the effects of oral administration of the insulin-like growth factor-I-rich fraction (IGF-I-RF) from bovine colostral whey on the regulation of blood glucose levels in streptozotocin (STZ)-induced diabetic mice. We obtained a peptide fraction containing IGF-I (10 ng/mg protein) from Holstein colostrum within 24 h after parturition by using ultrafiltration. The blood glucose levels of STZ-induced diabetic mice fed with IGF-I-RF (50 µg/kg per d) were significantly reduced by 11 and 33 % at weeks 2 and 4, respectively (P < 0·05). The body weights of STZ-induced diabetic mice increased following the oral administration of the IGF-I-RF. The kidney weights of STZ-induced diabetic mice decreased significantly (P < 0·05) following the administration of the IGF-I-RF, and the liver weights of STZ-induced diabetic mice decreased significantly (P < 0·05) following the administration of 50 µg/kg per d of the IGF-I-RF. The present results indicate that the IGF-I-RF obtained from Holstein colostrum could be a useful component for an alternative therapeutic modality for the treatment of diabetes in insulin-resistant patients.


Asunto(s)
Glucemia/efectos de los fármacos , Calostro/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Factor I del Crecimiento Similar a la Insulina/farmacología , Proteínas de la Leche/química , Animales , Peso Corporal/efectos de los fármacos , Bovinos , Prueba de Tolerancia a la Glucosa , Factor I del Crecimiento Similar a la Insulina/química , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Tamaño de los Órganos , Distribución Aleatoria , Bazo/efectos de los fármacos , Bazo/patología , Triglicéridos/metabolismo , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA