Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 165(3): 566-79, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27087445

RESUMEN

Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is the C-terminal cleavage product of profibrillin, and we name it Asprosin. Asprosin is secreted by white adipose, circulates at nanomolar levels, and is recruited to the liver, where it activates the G protein-cAMP-PKA pathway, resulting in rapid glucose release into the circulation. Humans and mice with insulin resistance show pathologically elevated plasma asprosin, and its loss of function via immunologic or genetic means has a profound glucose- and insulin-lowering effect secondary to reduced hepatic glucose release. Asprosin represents a glucogenic protein hormone, and therapeutically targeting it may be beneficial in type II diabetes and metabolic syndrome.


Asunto(s)
Ayuno/metabolismo , Proteínas de Microfilamentos/metabolismo , Fragmentos de Péptidos/metabolismo , Hormonas Peptídicas/metabolismo , Tejido Adiposo Blanco/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos/administración & dosificación , Ritmo Circadiano , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ayuno/sangre , Femenino , Retardo del Crecimiento Fetal/metabolismo , Fibrilina-1 , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas de Microfilamentos/sangre , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Hormonas Peptídicas/sangre , Hormonas Peptídicas/química , Hormonas Peptídicas/genética , Progeria/metabolismo , Proteínas Recombinantes/administración & dosificación , Alineación de Secuencia
2.
STAR Protoc ; 3(4): 101762, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36240062

RESUMEN

The unreliability of commercial recombinant asprosin preparations and variability between asprosin detection assays have proven to be a bottleneck in experimental interpretation. This protocol describes the use of viral vectors and expression plasmid for overexpression and secretion of human asprosin to achieve sustained elevation of asprosin protein in mice and HEK293T cells without using recombinant proteins. This protocol also includes a sandwich ELISA using anti-asprosin monoclonal antibodies for detection of asprosin in media from cultured cells and in plasma of mice. For complete details on the use and execution of this protocol, please refer to Duerrschmid et al. (2017), Mishra et al. (2021), and Mishra et al. (2022).


Asunto(s)
Fragmentos de Péptidos , Hormonas Peptídicas , Ratones , Humanos , Animales , Células HEK293 , Proteínas de Microfilamentos/metabolismo , Fibrilina-1
3.
Cell Metab ; 34(4): 549-563.e8, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35298903

RESUMEN

Asprosin is a fasting-induced glucogenic and centrally acting orexigenic hormone. The olfactory receptor Olfr734 is known to be the hepatic receptor for asprosin that mediates its effects on glucose production, but the receptor for asprosin's orexigenic function has been unclear. Here, we have identified protein tyrosine phosphatase receptor δ (Ptprd) as the orexigenic receptor for asprosin. Asprosin functions as a high-affinity Ptprd ligand in hypothalamic AgRP neurons, regulating the activity of this circuit in a cell-autonomous manner. Genetic ablation of Ptprd results in a strong loss of appetite, leanness, and an inability to respond to the orexigenic effects of asprosin. Ablation of Ptprd specifically in AgRP neurons causes resistance to diet-induced obesity. Introduction of the soluble Ptprd ligand-binding domain in the circulation of mice suppresses appetite and blood glucose levels by sequestering plasma asprosin. Identification of Ptprd as the orexigenic asprosin receptor creates a new avenue for the development of anti-obesity therapeutics.


Asunto(s)
Hormonas Peptídicas , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Proteína Relacionada con Agouti , Animales , Fibrilina-1/metabolismo , Glucosa/metabolismo , Ligandos , Ratones , Obesidad/metabolismo , Fragmentos de Péptidos/metabolismo , Hormonas Peptídicas/genética , Hormonas Peptídicas/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo
4.
Trends Endocrinol Metab ; 32(12): 1007-1014, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666940

RESUMEN

Hormones have traditionally been classified by their mode of biosynthetic origin. We postulate a mode of hormone biosynthesis that leads to a new subclass of protein hormones. Members of this class are derived from a cleavage event that also generates a much larger, functionally unrelated, nonhormonal protein. Here, we examine four representative members of this group: endostatin, endotrophin, asprosin, and placensin. We have named this subclass of protein hormones caudamins, from the Latin word cauda meaning 'tail'. These four caudamins have shown promise in understanding and treating diseases like metabolic syndrome and cancer. Identification of the rest of the caudamins will likely provide a plethora of drug targets for a variety of diseases.


Asunto(s)
Hormonas , Humanos
5.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904407

RESUMEN

Background: Recently, we discovered a new glucogenic and centrally acting orexigenic hormone - asprosin. Asprosin is elevated in metabolic syndrome (MS) patients, and its genetic loss results in reduced appetite, leanness, and blood glucose burden, leading to protection from MS. Methods: We generated three independent monoclonal antibodies (mAbs) that recognize unique asprosin epitopes and investigated their preclinical efficacy and tolerability in the treatment of MS. Results: Anti-asprosin mAbs from three distinct species lowered appetite and body weight, and reduced blood glucose in a dose-dependent and epitope-agnostic fashion in three independent MS mouse models, with an IC50 of ~1.5 mg/kg. The mAbs displayed a half-life of over 3days in vivo, with equilibrium dissociation-constants in picomolar to low nanomolar range. Conclusions: We demonstrate that anti-asprosin mAbs are dual-effect pharmacologic therapy that targets two key pillars of MS - over-nutrition and hyperglycemia. This evidence paves the way for further development towards an investigational new drug application and subsequent human trials for treatment of MS, a defining physical ailment of our time. Funding: DK118290 and DK125403 (R01; National Institute of Diabetes and Digestive and Kidney Diseases), DK102529 (K08; National Institute of Diabetes and Digestive and Kidney Diseases), Caroline Wiess Law Scholarship (Baylor College of Medicine, Harrington Investigatorship Harrington Discovery Institute at University Hospitals, Cleveland); Chao Physician Scientist Award (Baylor College of Medicine); RP150551 and RP190561 (Cancer Prevention and Research Institute of Texas [CPRIT]).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Fibrilina-1/inmunología , Síndrome Metabólico/terapia , Fragmentos de Péptidos/inmunología , Hormonas Peptídicas/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Apetito , Glucemia/análisis , Peso Corporal , Relación Dosis-Respuesta Inmunológica , Ensayo de Inmunoadsorción Enzimática , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Diabetes ; 69(4): 559-566, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32198197

RESUMEN

Genetic studies of patients with neonatal progeroid syndrome led to the discovery of the novel fasting-induced, glucogenic, and orexigenic hormone named asprosin, the C-terminal cleavage product of profibrillin. Upon secretion, asprosin travels to the liver, where it exerts a glucogenic effect through OR4M1, an olfactory G-protein-coupled receptor. It also crosses the blood-brain barrier to stimulate appetite-modulating neurons in the arcuate nucleus of the hypothalamus, exerting an orexigenic effect via an as yet unidentified receptor. Specifically, it stimulates appetite by activating orexigenic AgRP neurons and inhibiting anorexigenic POMC neurons. Studies have also focused on the therapeutic potential of inhibiting asprosin for treatment of obesity and type 2 diabetes, both of which are characterized by high levels of circulating asprosin. It has been shown that anti-asprosin monoclonal antibodies reduce blood glucose, appetite, and body weight, validating asprosin as a therapeutic target. Current work aims to uncover key features of the asprosin biology such as the identification of its neuronal receptor, identification of the secretion mechanism from adipose tissue, and development of anti-asprosin monoclonal antibodies as diabetes and obesity therapies.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Metabolismo Energético/fisiología , Proteínas de Microfilamentos/metabolismo , Obesidad/terapia , Fragmentos de Péptidos/metabolismo , Hormonas Peptídicas/metabolismo , Animales , Glucemia , Diabetes Mellitus Tipo 2/metabolismo , Fibrilina-1 , Humanos , Proteínas de Microfilamentos/genética , Obesidad/metabolismo , Fragmentos de Péptidos/genética , Hormonas Peptídicas/genética
7.
Physiol Genomics ; 38(2): 186-95, 2009 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-19417011

RESUMEN

Bile acids are powerful detergents produced by the liver to aid in the absorption of dietary lipids. We recently reported a novel role for Foxa2 in bile acid metabolism. The winged helix transcription factor Foxa2 is required to prevent intrahepatic cholestasis and liver injury in mice fed a cholic acid-enriched diet. Here, we use functional genomics to study how Foxa2 regulates its targets in a cholic acid-dependent manner. We found that multiple signaling pathways essential for the hepatic response to acute liver injury are impaired in livers of Foxa2-deficient mice, suggesting that the deletion of Foxa2 in the hepatocyte affects the liver on a large scale. We also discovered distinct feed-forward regulatory loops controlling Foxa2-dependent targets in a cholic acid-dependent or -independent manner. We show that Foxa2 interacts with different transcription factors to achieve gene expression responses appropriate for each physiologic state.


Asunto(s)
Ácido Cólico/metabolismo , Regulación de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Factor Nuclear 3-beta del Hepatocito/metabolismo , Hígado/metabolismo , Transducción de Señal/fisiología , Animales , Secuencia de Bases , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Genómica/métodos , Factor Nuclear 3-beta del Hepatocito/genética , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Coactivador 2 del Receptor Nuclear/genética , Análisis de Secuencia de ADN , Transducción de Señal/genética , Factores de Transcripción/metabolismo
8.
Nat Med ; 23(12): 1444-1453, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29106398

RESUMEN

Asprosin is a recently discovered fasting-induced hormone that promotes hepatic glucose production. Here we demonstrate that asprosin in the circulation crosses the blood-brain barrier and directly activates orexigenic AgRP+ neurons via a cAMP-dependent pathway. This signaling results in inhibition of downstream anorexigenic proopiomelanocortin (POMC)-positive neurons in a GABA-dependent manner, which then leads to appetite stimulation and a drive to accumulate adiposity and body weight. In humans, a genetic deficiency in asprosin causes a syndrome characterized by low appetite and extreme leanness; this is phenocopied by mice carrying similar mutations and can be fully rescued by asprosin. Furthermore, we found that obese humans and mice had pathologically elevated concentrations of circulating asprosin, and neutralization of asprosin in the blood with a monoclonal antibody reduced appetite and body weight in obese mice, in addition to improving their glycemic profile. Thus, in addition to performing a glucogenic function, asprosin is a centrally acting orexigenic hormone that is a potential therapeutic target in the treatment of both obesity and diabetes.


Asunto(s)
Regulación del Apetito/genética , Hipotálamo/metabolismo , Proteínas de Microfilamentos/fisiología , Fragmentos de Péptidos/fisiología , Hormonas Peptídicas/fisiología , Adolescente , Adulto , Animales , Depresores del Apetito/metabolismo , Femenino , Fibrilina-1 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Neuronas/metabolismo , Fragmentos de Péptidos/genética , Hormonas Peptídicas/genética , Ratas , Transducción de Señal , Adulto Joven
9.
Mol Endocrinol ; 27(2): 366-80, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23315938

RESUMEN

The rapidly growing family of transcriptional coregulators includes coactivators that promote transcription and corepressors that harbor the opposing function. In recent years, coregulators have emerged as important regulators of metabolic homeostasis, including the p160 steroid receptor coactivator (SRC) family. Members of the SRC family have been ascribed important roles in control of gluconeogenesis, fat absorption and storage in the liver, and fatty acid oxidation in skeletal muscle. To provide a deeper and more granular understanding of the metabolic impact of the SRC family members, we performed targeted metabolomic analyses of key metabolic byproducts of glucose, fatty acid, and amino acid metabolism in mice with global knockouts (KOs) of SRC-1, SRC-2, or SRC-3. We measured amino acids, acyl carnitines, and organic acids in five tissues with key metabolic functions (liver, heart, skeletal muscle, brain, plasma) isolated from SRC-1, -2, or -3 KO mice and their wild-type littermates under fed and fasted conditions, thereby unveiling unique metabolic functions of each SRC. Specifically, SRC-1 ablation revealed the most significant impact on hepatic metabolism, whereas SRC-2 appeared to impact cardiac metabolism. Conversely, ablation of SRC-3 primarily affected brain and skeletal muscle metabolism. Surprisingly, we identified very few metabolites that changed universally across the three SRC KO models. The findings of this Research Resource demonstrate that coactivator function has very limited metabolic redundancy even within the homologous SRC family. Furthermore, this work also demonstrates the use of metabolomics as a means for identifying novel metabolic regulatory functions of transcriptional coregulators.


Asunto(s)
Metaboloma , Coactivadores de Receptor Nuclear/metabolismo , Aminoácidos/metabolismo , Animales , Encéfalo/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Coactivador 1 de Receptor Nuclear/deficiencia , Coactivador 1 de Receptor Nuclear/genética , Coactivador 2 del Receptor Nuclear/deficiencia , Coactivador 2 del Receptor Nuclear/genética , Coactivador 3 de Receptor Nuclear/deficiencia , Coactivador 3 de Receptor Nuclear/genética , Coactivadores de Receptor Nuclear/sangre , Coactivadores de Receptor Nuclear/genética , Plasma/metabolismo
10.
Cell Metab ; 15(5): 752-63, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22560224

RESUMEN

Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of ß-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic.


Asunto(s)
Carnitina Aciltransferasas/genética , Carnitina Aciltransferasas/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Coactivador 3 de Receptor Nuclear/genética , Coactivador 3 de Receptor Nuclear/metabolismo , Animales , Carnitina Aciltransferasas/deficiencia , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Humanos , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hipoglucemia/genética , Hipoglucemia/metabolismo , Cetosis/genética , Cetosis/metabolismo , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Enfermedades Musculares/enzimología , Coactivador 3 de Receptor Nuclear/deficiencia , Oxidación-Reducción
11.
Cell Metab ; 13(1): 35-43, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21195347

RESUMEN

All organisms have devised strategies to counteract energy depletion and promote fitness for survival. We show here that cellular energy depletion puts into play a surprising strategy that leads to absorption of exogenous fuel for energy repletion. The energy-depletion-sensing kinase AMPK binds, phosphorylates, and activates the transcriptional coactivator SRC-2, which in a liver-specific manner promotes absorption of dietary fat from the gut. Hepatocyte-specific deletion of SRC-2 results in intestinal fat malabsorption and attenuated entry of fat into the blood stream. This defect can be attributed to AMPK- and SRC-2-mediated transcriptional regulation of hepatic bile acid (BA) secretion into the gut, as it can be completely rescued by replenishing intestinal BA or by genetically restoring the levels of hepatic bile salt export pump (BSEP). Our results position the hepatic AMPK-SRC-2 axis as an energy rheostat, which upon cellular energy depletion resets whole-body energy by promoting absorption of dietary fuel.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Grasas de la Dieta/metabolismo , Coactivador 2 del Receptor Nuclear/deficiencia , Coactivador 2 del Receptor Nuclear/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Técnicas de Ablación , Animales , Ácidos y Sales Biliares/metabolismo , Células Cultivadas , Metabolismo Energético , Regulación de la Expresión Génica , Células Hep G2 , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Absorción Intestinal , Hígado/citología , Hígado/enzimología , Hígado/metabolismo , Síndromes de Malabsorción/metabolismo , Síndromes de Malabsorción/patología , Masculino , Ratones , Ratones Noqueados , Coactivador 2 del Receptor Nuclear/genética , Fosforilación , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/metabolismo , Activación Transcripcional
12.
Cell Metab ; 12(6): 606-18, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21109193

RESUMEN

Gluconeogenesis makes a major contribution to hepatic glucose production, a process critical for survival in mammals. In this study, we identify the p160 family member, SRC-1, as a key coordinator of the hepatic gluconeogenic program in vivo. SRC-1-null mice displayed hypoglycemia secondary to a deficit in hepatic glucose production. Selective re-expression of SRC-1 in the liver restored blood glucose levels to a normal range. SRC-1 was found induced upon fasting to coordinate in a cell-autonomous manner, the gene expression of rate-limiting enzymes of the gluconeogenic pathway. At the molecular level, the main role of SRC-1 was to modulate the expression and the activity of C/EBPα through a feed-forward loop in which SRC-1 used C/EBPα to transactivate pyruvate carboxylase, a crucial gene for initiation of the gluconeogenic program. We propose that SRC-1 acts as a critical mediator of glucose homeostasis in the liver by adjusting the transcriptional activity of key genes involved in the hepatic glucose production machinery.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Glucosa/biosíntesis , Hipoglucemia/metabolismo , Hígado/metabolismo , Coactivador 1 de Receptor Nuclear/metabolismo , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa
13.
Science ; 322(5906): 1395-9, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19039140

RESUMEN

Hepatic glucose production is critical for basal brain function and survival when dietary glucose is unavailable. Glucose-6-phosphatase (G6Pase) is an essential, rate-limiting enzyme that serves as a terminal gatekeeper for hepatic glucose release into the plasma. Mutations in G6Pase result in Von Gierke's disease (glycogen storage disease-1a), a potentially fatal genetic disorder. We have identified the transcriptional coactivator SRC-2 as a regulator of fasting hepatic glucose release, a function that SRC-2 performs by controlling the expression of hepatic G6Pase. SRC-2 modulates G6Pase expression directly by acting as a coactivator with the orphan nuclear receptor RORalpha. In addition, SRC-2 ablation, in both a whole-body and liver-specific manner, resulted in a Von Gierke's disease phenotype in mice. Our results position SRC-2 as a critical regulator of mammalian glucose production.


Asunto(s)
Glucosa-6-Fosfatasa/genética , Glucosa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Hígado/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Animales , Células Cultivadas , Ayuno , Femenino , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucosa-6-Fosfatasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hepatocitos/metabolismo , Riñón/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Noqueados , Coactivador 2 del Receptor Nuclear/genética , Interferencia de ARN , Receptores de Ácido Retinoico/metabolismo , Elementos de Respuesta , Receptor alfa de Ácido Retinoico , Transcripción Genética , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA