Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Microbiol ; 23(1): 206, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528343

RESUMEN

BACKGROUND: The microbiome of the human gut serves a role in a number of physiological processes, but can be altered through effects of age, diet, and disturbances such as antibiotics. Several studies have demonstrated that commonly used antibiotics can have sustained impacts on the diversity and the composition of the gut microbiome. The impact of the two most overused antibiotics, azithromycin, and amoxicillin, in the human microbiome has not been thoroughly described. In this study, we recruited a group of individuals and unrelated controls to decipher the effects of the commonly used antibiotics amoxicillin and azithromycin on their gut microbiomes. RESULTS: We characterized the gut microbiomes by metagenomic sequencing followed by characterization of the resulting microbial communities. We found that there were clear and sustained effects of the antibiotics on the gut microbial community with significant alterations in the representations of Bifidobacterium species in response to azithromycin (macrolide antibiotic). These results were supported by significant increases identified in putative antibiotic resistance genes associated with macrolide resistance. Importantly, we did not identify these trends in the unrelated control individuals. There were no significant changes observed in other members of the microbial community. CONCLUSIONS: As we continue to focus on the role that the gut microbiome plays and how disturbances induced by antibiotics might affect our overall health, elucidating members of the community most affected by their use is of critical importance to understanding the impacts of common antibiotics on those who take them. Clinical Trial Registration Number NCT05169255. This trial was retrospectively registered on 23-12-2021.


Asunto(s)
Amoxicilina , Antibacterianos , Humanos , Antibacterianos/farmacología , Amoxicilina/farmacología , Azitromicina/farmacología , Metagenómica , Macrólidos/farmacología , Farmacorresistencia Bacteriana
2.
Hepatology ; 72(6): 2182-2196, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32654263

RESUMEN

BACKGROUND AND AIMS: Alcoholic hepatitis (AH) is a severe manifestation of alcohol-associated liver disease (ALD) with high mortality. Although gut bacteria and fungi modulate disease severity, little is known about the effects of the viral microbiome (virome) in patients with ALD. APPROACH AND RESULTS: We extracted virus-like particles from 89 patients with AH who were enrolled in a multicenter observational study, 36 with alcohol use disorder (AUD), and 17 persons without AUD (controls). Virus-like particles from fecal samples were fractionated using differential filtration techniques, and metagenomic sequencing was performed to characterize intestinal viromes. We observed an increased viral diversity in fecal samples from patients with ALD, with the most significant changes in samples from patients with AH. Escherichia-, Enterobacteria-, and Enterococcus phages were over-represented in fecal samples from patients with AH, along with significant increases in mammalian viruses such as Parvoviridae and Herpesviridae. Antibiotic treatment was associated with higher viral diversity. Specific viral taxa, such as Staphylococcus phages and Herpesviridae, were associated with increased disease severity, indicated by a higher median Model for End-Stage Liver Disease score, and associated with increased 90-day mortality. CONCLUSIONS: In conclusion, intestinal viral taxa are altered in fecal samples from patients with AH and associated with disease severity and mortality. Our study describes an intestinal virome signature associated with AH.


Asunto(s)
Enfermedad Hepática en Estado Terminal/virología , Hepatitis Alcohólica/virología , Mucosa Intestinal/virología , Cirrosis Hepática/virología , Viroma/genética , Adulto , Anciano , Animales , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Estudios de Casos y Controles , ADN Viral/aislamiento & purificación , Enfermedad Hepática en Estado Terminal/diagnóstico , Enfermedad Hepática en Estado Terminal/mortalidad , Enfermedad Hepática en Estado Terminal/terapia , Heces/virología , Femenino , Hepatitis Alcohólica/diagnóstico , Hepatitis Alcohólica/mortalidad , Hepatitis Alcohólica/terapia , Herpesviridae/genética , Herpesviridae/aislamiento & purificación , Humanos , Hígado/patología , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/mortalidad , Cirrosis Hepática/terapia , Masculino , Metagenómica , Persona de Mediana Edad , Parvoviridae/genética , Parvoviridae/aislamiento & purificación , ARN Viral/aislamiento & purificación , Índice de Severidad de la Enfermedad , Tasa de Supervivencia
3.
Sci Rep ; 14(1): 10394, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710815

RESUMEN

Tobacco use significantly influences the oral microbiome. However, less is known about how different tobacco products specifically impact the oral microbiome over time. To address this knowledge gap, we characterized the oral microbiome of cigarette users, smokeless tobacco users, and non-users over 4 months (four time points). Buccal swab and saliva samples (n = 611) were collected from 85 participants. DNA was extracted from all samples and sequencing was carried out on an Illumina MiSeq, targeting the V3-V4 region of the 16S rRNA gene. Cigarette and smokeless tobacco users had more diverse oral bacterial communities, including a higher relative abundance of Firmicutes and a lower relative abundance of Proteobacteria, when compared to non-users. Non-users had a higher relative abundance of Actinomyces, Granulicatella, Haemophilus, Neisseria, Oribacterium, Prevotella, Pseudomonas, Rothia, and Veillonella in buccal swab samples, compared to tobacco users. While the most abundant bacterial genera were relatively constant over time, some species demonstrated significant shifts in relative abundance between the first and last time points. In addition, some opportunistic pathogens were detected among tobacco users including Neisseria subflava, Bulleidia moorei and Porphyromonas endodontalis. Overall, our results provide a more holistic understanding of the structure of oral bacterial communities in tobacco users compared to non-users.


Asunto(s)
Disbiosis , Microbiota , Boca , ARN Ribosómico 16S , Tabaco sin Humo , Humanos , Tabaco sin Humo/efectos adversos , Masculino , Femenino , Disbiosis/microbiología , Adulto , ARN Ribosómico 16S/genética , Boca/microbiología , Saliva/microbiología , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Fumadores , Adulto Joven , Fumar Cigarrillos/efectos adversos , Mucosa Bucal/microbiología
4.
Gut Microbes ; 15(1): 2236750, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475473

RESUMEN

The gastrointestinal microbiome plays a significant role in modulating numerous host processes, including metabolism. Prior studies show that when mice receive fecal transplants from obese donors on high-fat diets (HFD) (even when recipient mice are fed normal diets after transplantation), they develop obese phenotypes, demonstrating the prominent role that gut microbiota play in determining lean and obese phenotypes. While much of the credit has been given to gut bacteria, the impact of gut viruses on these phenotypes is understudied. To address this shortcoming, we gavaged mice with viromes isolated from donors fed HFD or normal chow over a 4-week study. By characterizing the gut bacterial biota via 16S rRNA amplicon sequencing and measuring mouse weights over time, we demonstrate that transplanted viruses affect the gut bacterial community, as well as weight gain/loss. Notably, mice fed chow but gavaged with HFD-derived viromes gained more weight than their counterparts receiving chow-derived viromes. The converse was also true: mice fed HFD but gavaged with chow-derived viromes gained less weight than their counterparts receiving HFD-derived viromes. Results were replicated in two independent experiments and phenotypic changes were accompanied by significant and identifiable differences in the fecal bacterial biota. Due to methodological limitations, we were unable to identify the specific bacterial strains responsible for respective phenotypic changes. This study confirms that virome-mediated perturbations can alter the fecal microbiome in vivo and indicates that such perturbations are sufficient to drive lean and obese phenotypes in mice.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Virus , Ratones , Animales , Trasplante de Microbiota Fecal , Viroma , ARN Ribosómico 16S/genética , Obesidad/microbiología , Dieta Alta en Grasa/efectos adversos , Bacterias/genética , Fenotipo , Ratones Endogámicos C57BL
5.
bioRxiv ; 2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36778328

RESUMEN

Background: The gastrointestinal microbiome plays a significant role in numerous host processes and has an especially large impact on modulating the host metabolism. Prior studies have shown that when mice receive fecal transplants from obese donors that were fed high-fat diets (HFD) (even when recipient mice are fed normal diets after transplantation), they develop obese phenotypes. These studies demonstrate the prominent role that the gut microbiota play in determining lean and obese phenotypes. While much of the credit has been given to gut bacteria, studies have not measured the impact of gut viruses on these phenotypes. To address this shortcoming, we gavaged mice with viromes isolated from donors fed HFD or normal chow. By characterizing the mice’s gut bacterial biota and weight-gain phenotypes over time, we demonstrate that viruses can shape the gut bacterial community and affect weight gain or loss. Results: We gavaged mice longitudinally over 4 weeks while measuring their body weights and collecting fecal samples for 16S rRNA amplicon sequencing. We evaluated mice that were fed normal chow or high-fat diets, and gavaged each group with either chow-derived fecal viromes, HFD-derived fecal viromes, or phosphate buffered saline controls. We found a significant effect of gavage type, where mice fed chow but gavaged with HFD-derived viromes gained significantly more weight than their counterparts receiving chow-derived viromes. The converse was also true: mice fed HFD but gavaged with chow-derived viromes gained significantly less weight than their counterparts receiving HFD-derived viromes. These results were replicated in two separate experiments and the phenotypic changes were accompanied by significant and identifiable differences in the fecal bacterial biota. Notably, there were differences in Lachnospirales and Clostridia in mice fed chow but gavaged with HFD-derived fecal viromes, and in Peptostreptococcales, Oscillospirales, and Lachnospirales in mice fed HFD but gavaged with chow-derived fecal viromes. Due to methodological limitations, we were unable to identify specific bacterial species or strains that were responsible for respective phenotypic changes. Conclusions: This study confirms that virome-mediated perturbations can alter the fecal microbiome in an in vivo model and indicates that such perturbations are sufficient to drive lean and obese phenotypes in mice.

6.
Microbiol Spectr ; : e0450922, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916973

RESUMEN

The exchange of microbes between humans and the built environment is a dynamic process that has significant impact on health. Most studies exploring the microbiome of the built environment have been predicated on improving our understanding of pathogen emergence, persistence, and transmission. Previous studies have demonstrated that SARS-CoV-2 presence significantly correlates with the proportional abundance of specific bacteria on surfaces in the built environment. However, in these studies, SARS-CoV-2 originated from infected patients. Here, we perform a similar assessment for a clinical microbiology lab while staff were handling SARS-CoV-2 infected samples. The goal of this study was to understand the distribution and dynamics of microbial population on various surfaces within different sections of a clinical microbiology lab during a short period of 2020 Coronavirus disease (COVID-19) pandemic. We sampled floors, benches, and sinks in 3 sections (bacteriology, molecular microbiology, and COVID) of an active clinical microbiology lab over a 3-month period. Although floor samples harbored SARS-CoV-2, it was rarely identified on other surfaces, and bacterial diversity was significantly greater on floors than sinks and benches. The floors were primarily colonized by bacteria common to natural environments (e.g., soils), and benchtops harbored a greater proportion of human-associated microbes, including Staphylococcus and Streptococcus. Finally, we show that the microbial composition of these surfaces did not change over time and remained stable. Despite finding viruses on the floors, no lab-acquired infections were reported during the study period, which suggests that lab safety protocols and sanitation practices were sufficient to prevent pathogen exposures. IMPORTANCE For decades, diagnostic clinical laboratories have been an integral part of the health care systems that perform diagnostic tests on patient's specimens in bulk on a regular basis. Understanding their microbiota should assist in designing and implementing disinfection, and cleaning regime in more effective way. To our knowledge, there is a lack of information on the composition and dynamics of microbiota in the clinical laboratory environments, and, through this study, we have tried to fill that gap. This study has wider implications as understanding the makeup of microbes on various surfaces within clinical laboratories could help identify any pathogenic bacterial taxa that could have colonized these surfaces, and might act as a potential source of laboratory-acquired infections. Mapping the microbial community within these built environments may also be critical in assessing the reliability of laboratory safety and sanitation practices to lower any potential risk of exposures to health care workers.

7.
Microbiol Spectr ; 10(3): e0113522, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35638779

RESUMEN

The study of bacteriophage communities reproducing in the gastrointestinal tract is limited by the quality of model systems supporting experimental manipulation in vitro. Traditionally, studies aiming to experimentally address phage-bacteria dynamics have utilized gnotobiotic mice inoculated with defined bacterial communities. While mouse models simulate complex interactions between microbes and their host, they also forestall the study of phage-bacteria dynamics in isolation of host factors. Here, we established a method for manipulating phage-bacteria dynamics using an in vitro chemostat bioreactor model of the distal human gut. We create defined communities representing a subset of bacteria in the feces of two human individuals, cultivated these communities in chemostat bioreactors, developed methods to purify the autochthonous viromes associated with each cultured community, and trialed a system for transmitting live or heat-killed viruses between chemostat bioreactors to decipher outcomes of virus-mediated perturbation. We found that allochthonous viromes were detectable via metagenomic sequencing against the autochthonous virome background and that shifts in bacterial community diversity and composition were detectable in relation to time posttreatment. These microbiome composition changes spanned multiple phyla, including Bacteroidetes, Firmicutes, and Actinobacteria. We also found that compositional changes occurred when using live viruses regardless of whether intrasubject or intersubject viruses were used as the perturbation agents. Our results supported the use of chemostat bioreactors as a platform for studying complex bacteria-phage dynamics in vitro. IMPORTANCE Bacteriophages are relatively ubiquitous in the environment and are highly abundant in the human microbiome. Phages can be commonly transmitted between close contacts, but the impact that such transmissions may have on their bacteria counterparts in our microbiomes is unknown. We developed a chemostat cultivation system to simulate individual-specific features of human distal gut microbiota that can be used to transmit phages between ecosystems and measure their impacts on the microbiota. We used this system to transfer phage communities between chemostats that represented different human subjects. We found that there were significant effects on overall microbiota diversity and changes in the relative abundances of Bacteroidetes, Firmicutes, and Actinobacteria, when intersubject perturbations were performed, compared to intrasubject perturbations. These changes were observed when perturbations were performed using live phages, but not when heat-killed phages were used, and they support the use of chemostat systems for studying complex human bacteria-phage dynamics.


Asunto(s)
Bacteriófagos , Microbiota , Virus , Animales , Bacterias , Bacteroidetes , Heces/microbiología , Tracto Gastrointestinal/microbiología , Humanos , Ratones
8.
Female Pelvic Med Reconstr Surg ; 28(1): 20-26, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33978602

RESUMEN

OBJECTIVE: The aim of this study was to describe effects of vaginal estrogen (VE) on the urogenital microbiome in postmenopausal women with recurrent urinary tract infections (rUTIs). METHODS: This is a secondary analysis of 17 participants enrolled in a randomized controlled trial of VE versus placebo on urinary tract infection recurrence in postmenopausal women with rUTIs. Paired clean-catch urine samples were collected at baseline and after 6 months of VE and sequenced using 16S rRNA gene sequencing. Sequence reads were analyzed using Quantitative Insights Into Microbial Ecology 2. Changes in α diversity, ß diversity, and differentially abundant genera were measured between paired baseline and 6-month samples and between those with a urinary tract infection at 6 months (failures) and those without (successes). RESULTS: Of the 17 women, 11 were successes and 6 were failures after 6 months of VE treatment. There was a significant change in α diversity from baseline to month 6 in samples overall (Kruskal-Wallis χ2 = 3.47, P = 0.037) and in the treatment success group (Yuen T = -2.53, P = 0.035). The increase in relative abundance of Lactobacillus crispatus, Lactobacillus gasseri, and Lactobacillus iners AB-1 was correlated with month 6. A relative bloom of L. crispatus compared with L. gasseri was associated with treatment success (Kruskal-Wallis χ2 = 4.9, P = 0.0014). CONCLUSIONS: Lactobacillus increases in the urogenital microbiome of postmenopausal women with rUTI after 6 months of VE. However, only the relative increase in L. crispatus specifically may be associated with treatment success.


Asunto(s)
Microbiota , Infecciones Urinarias , Estrógenos , Femenino , Humanos , Posmenopausia , ARN Ribosómico 16S/genética , Infecciones Urinarias/tratamiento farmacológico , Vagina
9.
Front Microbiol ; 12: 599664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135868

RESUMEN

Electronic (e)-cigarettes have been advocated as a safer alternative to conventional tobacco cigarettes. However, there is a paucity of data regarding the impact of e-cigarette aerosol deposition on the human oral microbiome, a key component in human health and disease. We aimed to fill this knowledge gap through a comparative analysis of the microbial community profiles from e-cigarette users and healthy controls [non-smokers/non-vapers (NSNV)]. Moreover, we sought to determine whether e-cigarette aerosol exposure from vaping induces persistent changes in the oral microbiome. To accomplish this, salivary and buccal mucosa samples were collected from e-cigarette users and NSNV controls, with additional oral samples collected from e-cigarette users after 2 weeks of decreased use. Total DNA was extracted from all samples and subjected to PCR amplification and sequencing of the V3-V4 hypervariable regions of the 16S rRNA gene. Our analysis revealed several prominent differences associated with vaping, specific to the sample type (i.e., saliva and buccal). In the saliva, e-cigarette users had a significantly higher alpha diversity, observed operational taxonomic units (OTUs) and Faith's phylogenetic diversity (PD) compared to NSNV controls, which declined with decreased vaping. The buccal mucosa swab samples were marked by a significant shift in beta diversity between e-cigarette users and NSNV controls. There were also significant differences in the relative abundance of several bacterial taxa, with a significant increase in Veillonella and Haemophilus in e-cigarette users. In addition, nasal swabs demonstrated a trend toward higher colonization rates with Staphylococcus aureus in e-cigarette users relative to controls (19 vs. 7.1%; p = n.s.). Overall, these data reveal several notable differences in the oral bacterial community composition and diversity in e-cigarette users as compared to NSNV controls.

10.
Water Res ; 169: 115250, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31726395

RESUMEN

The use of irrigation water sourced from reclamation facilities and untreated surface water bodies may be a practical solution to attenuate the burden on diminishing groundwater aquifers. However, comprehensive microbial characterizations of these water sources are generally lacking, especially with regard to variations through time and across multiple water types. To address this knowledge gap we used a shotgun metagenomic approach to characterize the taxonomic and functional variations of microbial communities within two agricultural ponds, two freshwater creeks, two brackish rivers, and three water reclamation facilities located in the Mid-Atlantic, United States. Water samples (n = 24) were collected from all sites between October and November 2016, and filtered onto 0.2 µm membrane filters. Filters were then subjected to total DNA extraction and shotgun sequencing on the Illumina HiSeq platform. From these data, we found that Betaproteobacteria dominated the majority of freshwater sites, while Alphaproteobacteria were abundant at times in the brackish waters. One of these brackish sites was also host to a greater abundance of the bacterial genera Gimesia and Microcystis. Furthermore, predicted microbial features (e.g. antibiotic resistance genes (ARGs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays) varied based on specific site and sampling date. ARGs were found across samples, with the diversity and abundance highest in those from a reclamation facility and a wastewater-impacted freshwater creek. Additionally, we identified over 600 CRISPR arrays, containing ∼2600 unique spacers, suggestive of a diverse and often site-specific phage community. Overall, these results provide a better understanding of the complex microbial community in untreated surface and reclaimed waters, while highlighting possible environmental and human health impacts associated with their use in agriculture.


Asunto(s)
Metagenoma , Aguas Residuales , Farmacorresistencia Microbiana , Humanos , Ríos , Microbiología del Agua
11.
Environ Microbiome ; 15(1): 18, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33902740

RESUMEN

BACKGROUND: Ponds are important freshwater habitats that support both human and environmental activities. However, relative to their larger counterparts (e.g. rivers, lakes), ponds are understudied, especially with regard to their microbial communities. Our study aimed to fill this knowledge gap by using culture-independent, high-throughput sequencing to assess the dynamics, taxonomy, and functionality of bacterial and viral communities in a freshwater agricultural pond. RESULTS: Water samples (n = 14) were collected from a Mid-Atlantic agricultural pond between June 2017 and May 2018 and filtered sequentially through 1 and 0.2 µm filter membranes. Total DNA was then extracted from each filter, pooled, and subjected to 16S rRNA gene and shotgun sequencing on the Illumina HiSeq 2500 platform. Additionally, on eight occasions water filtrates were processed for viral metagenomes (viromes) using chemical concentration and then shotgun sequenced. A ubiquitous freshwater phylum, Proteobacteria was abundant at all sampling dates throughout the year. However, environmental characteristics appeared to drive the structure of the community. For instance, the abundance of Cyanobacteria (e.g. Nostoc) increased with rising water temperatures, while a storm event appeared to trigger an increase in overall bacterial diversity, as well as the relative abundance of Bacteroidetes. This event was also associated with an increase in the number of antibiotic resistance genes. The viral fractions were dominated by dsDNA of the order Caudovirales, namely Siphoviridae and Myovirdae. CONCLUSIONS: Overall, this study provides one of the largest datasets on pond water microbial ecology to date, revealing seasonal trends in the microbial taxonomic composition and functional potential.

12.
mSphere ; 5(1)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32102942

RESUMEN

Alterations in diet can have significant impact on the host, with high-fat diet (HFD) leading to obesity, diabetes, and inflammation of the gut. Although membership and abundances in gut bacterial communities are strongly influenced by diet, substantially less is known about how viral communities respond to dietary changes. Examining fecal contents of mice as the mice were transitioned from normal chow to HFD, we found significant changes in the relative abundances and the diversity in the gut of bacteria and their viruses. Alpha diversity of the bacterial community was significantly diminished in response to the diet change but did not change significantly in the viral community. However, the diet shift significantly impacted the beta diversity in both the bacterial and viral communities. There was a significant shift away from the relatively abundant Siphoviridae accompanied by increases in bacteriophages from the Microviridae family. The proportion of identified bacteriophage structural genes significantly decreased after the transition to HFD, with a conserved loss of integrase genes in all four experimental groups. In total, this study provides evidence for substantial changes in the intestinal virome disproportionate to bacterial changes, and with alterations in putative viral lifestyles related to chromosomal integration as a result of shift to HFD.IMPORTANCE Prior studies have shown that high-fat diet (HFD) can have profound effects on the gastrointestinal (GI) tract microbiome and also demonstrate that bacteria in the GI tract can affect metabolism and lean/obese phenotypes. We investigated whether the composition of viral communities that also inhabit the GI tract are affected by shifts from normal to HFD. We found significant and reproducible shifts in the content of GI tract viromes after the transition to HFD. The differences observed in virome community membership and their associated gene content suggest that these altered viral communities are populated by viruses that are more virulent toward their host bacteria. Because HFD also are associated with significant shifts in GI tract bacterial communities, we believe that the shifts in the viral community may serve to drive the changes that occur in associated bacterial communities.


Asunto(s)
Dieta Alta en Grasa , Heces/virología , Microbioma Gastrointestinal , Intestinos/virología , Virus/clasificación , Animales , Bacterias/clasificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética
13.
Mayo Clin Proc Innov Qual Outcomes ; 4(1): 21-30, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32055768

RESUMEN

OBJECTIVE: To determine whether a single-use stethoscope diaphragm barrier surface remains aseptic when placed on pathogen-contaminated stethoscopes. METHODS: From May 31 to August 5, 2019, we tested 2 separate barriers using 3 different strains of 7 human pathogens, including extended-spectrum ß-lactamase-producing Escherichia coli, methicillin-resistant Staphylococcus aureus, and vancomycin resistant Enterococcus faecium. RESULTS: For all diaphragms with either of the 2 barriers tested, no growth was recorded for any of the pathogens. Stethoscopes with aseptic barriers remained sterile for up to 24 hours. These single-use barriers also provided aseptic surfaces when stethoscope diaphragms were inoculated with human specimens, including saliva, stool, urine, and sputum. CONCLUSION: Disposable aseptic diaphragm barriers may provide robust and efficient solutions to reduce transmission of pathogens via stethoscopes.

14.
Sci Total Environ ; 706: 135395, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846873

RESUMEN

Lotic surface water sites (e.g. creeks) are important resources for localized agricultural irrigation. However, there is concern that microbial contaminants within untreated surface water may be transferred onto irrigated soil and crops. To evaluate this issue, water samples were collected between January 2017 and August 2018 from a freshwater creek used to irrigate kale and radish plants on a small farm in the Mid-Atlantic, United States. In addition, on one sampling date, a field survey was conducted in which additional water (creek source and point-of-use) and soil samples were collected to assess the viral and bacterial communities pre- and post- irrigation. All samples were processed for DNA extracts and shotgun sequenced on the Illumina HiSeq platform. The resulting metagenomic libraries were assembled de novo and taxonomic and functional features were assigned at the contig and peptide level. From these data, we observed that Betaproteobacteria (e.g. Variovorax) dominated the water, both at the source and point-of-use, and Alphaproteobacteria (e.g. Streptomyces) dominated both pre- and post-irrigated soil. Additionally, in the creek source water there were variations in the abundance of the dominant bacterial genera and functional annotations associated with seasonal characteristics (e.g. water temperature). Antibiotic resistance genes and virulence factors were also identified in the creek water and soil, with the majority specific to their respective habitat. Moreover, an analysis of clustered regularly interspaced short palindromic repeat (CRISPR) arrays showed the persistence of certain spacers through time in the creek water, as well as specific interactions between creek bacteriophages and their hosts. Overall, these findings provide a more holistic picture of bacterial and viral composition, dynamics, and interactions within a freshwater creek that can be utilized to further our knowledge on its suitability and safety for irrigation.


Asunto(s)
Metagenoma , Riego Agrícola , Bacterias , Agua Dulce , Mid-Atlantic Region , Microbiología del Suelo
15.
Microbiome ; 8(1): 86, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513256

RESUMEN

BACKGROUND: Inanimate surfaces within a hospital serve as a reservoir of microbial life that may colonize patients and ultimately result in healthcare associated infections (HAIs). Critically ill patients in intensive care units (ICUs) are particularly vulnerable to HAIs. Little is known about how the microbiome of the ICU is established or what factors influence its evolution over time. A unique opportunity to bridge the knowledge gap into how the ICU microbiome evolves emerged in our health system, where we were able to characterize microbial communities in an established hospital ICU prior to closing for renovations, during renovations, and then after re-opening. RESULTS: We collected swab specimens from ICU bedrails, computer keyboards, and sinks longitudinally at each renovation stage, and analyzed the bacterial compositions on these surfaces by 16S rRNA gene sequencing. Specimens collected before ICU closure had the greatest alpha diversity, while specimens collected after the ICU had been closed for over 300 days had the least. We sampled the ICU during the 45 days after re-opening; however, within that time frame, the alpha diversity never reached pre-closure levels. There were clear and significant differences in microbiota compositions at each renovation stage, which was driven by environmental bacteria after closure and human-associated bacteria after re-opening and before closure. CONCLUSIONS: Overall, we identified significant differences in microbiota diversity and community composition at each renovation stage. These data help to decipher the evolution of the microbiome in the most critical part of the hospital and demonstrate the significant impacts that microbiota from patients and staff have on the evolution of ICU surfaces. Video Abstract.


Asunto(s)
Biodiversidad , Microbiología Ambiental , Arquitectura y Construcción de Hospitales , Unidades de Cuidados Intensivos , Microbiota , Bacterias/genética , Arquitectura y Construcción de Hospitales/estadística & datos numéricos , Microbiota/genética , ARN Ribosómico 16S/genética , Factores de Tiempo
16.
BMC Res Notes ; 12(1): 223, 2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975220

RESUMEN

OBJECTIVE: Zero-valent iron sand filtration can remove multiple contaminants, including some types of pathogenic bacteria, from contaminated water. However, its efficacy at removing complex viral populations, such as those found in reclaimed water used for agricultural irrigation, has not been fully evaluated. Therefore, this study utilized metagenomic sequencing and epifluorescent microscopy to enumerate and characterize viral populations found in reclaimed water and zero-valent iron-sand filtered reclaimed water sampled three times during a larger greenhouse study. RESULTS: Zero-valent iron-sand filtered reclaimed water samples had significantly less virus-like particles than reclaimed water samples at all collection dates, with the reclaimed water averaging between 108 and 109 and the zero-valent iron-sand filtered reclaimed water averaging between 106 and 107 virus-like particles per mL. In addition, for both sample types, viral metagenomes (viromes) were dominated by bacteriophages of the order Caudovirales, largely Siphoviridae, and genes related to DNA metabolism. However, the proportion of sequences homologous to bacteria, as well as the abundance of genes possibly originating from a bacterial host, was higher in the viromes of zero-valent iron-sand filtered reclaimed water samples. Overall, zero-valent iron-sand filtered reclaimed water had a lower total concentration of virus-like particles and a different virome community composition compared to unfiltered reclaimed water.


Asunto(s)
Bacterias/genética , Caudovirales/genética , Restauración y Remediación Ambiental/métodos , Hierro/química , Dióxido de Silicio/química , Siphoviridae/genética , Adsorción , Riego Agrícola/métodos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Caudovirales/clasificación , Caudovirales/aislamiento & purificación , ADN Bacteriano/genética , ADN Viral/genética , Filtración/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenómica/métodos , Filogenia , Siphoviridae/clasificación , Siphoviridae/aislamiento & purificación , Virión/aislamiento & purificación , Aguas Residuales/microbiología , Aguas Residuales/virología , Purificación del Agua/métodos
17.
Sci Total Environ ; 666: 461-471, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30802661

RESUMEN

The impact of microbially contaminated irrigation water on risks to produce safety and public health is a complex issue that is not well understood. This study tracked fecal indicators, pathogenic bacteria, and total bacterial communities from a creek water irrigation source to irrigated produce to assess the impact of irrigation events on soil and produce-associated microbiota. Kale and radishes were drip-irrigated using Mid-Atlantic creek water in October 2017. Plant and soil samples were collected immediately before and after irrigation, and for 3 consecutive days thereafter. All samples (n = 134), including irrigation water, were tested for generic Escherichia coli and total coliforms (TC) using standard membrane filtration or direct plating, and for Salmonella enterica and Listeria monocytogenes by selective enrichment. DNA extracted from all samples was PCR-amplified for the V3-V4 region of the 16S rRNA gene for bacterial community profiling. In soil, TC levels were significantly higher immediately and 3 days post-irrigation compared to pre-irrigation (p < 0.01). E. coli levels in soil increased after irrigation, but the difference was not significant (p = 0.31), and die-off was not observed. No E. coli were detected on kale leaves. TC increased over the study period on radish roots (p < 0.01) but not kale leaves (p = 0.43). Although target pathogens were detected in irrigation water, S. enterica was detected from only one post-irrigation kale sample and L. monocytogenes was not detected in the field. The 16S rRNA gene sequencing data revealed differences in bacterial community structure and composition across sample types and showed that radish soil and root surface bacterial communities were more strongly influenced by irrigation compared to kale samples. This study provides insights into the impact of irrigation water on fresh produce microbiota, revealing that, although irrigation did influence crop-associated microbiota (especially below ground) in the field, bacterial pathogens were not likely transferred to the crop.


Asunto(s)
Bacterias/aislamiento & purificación , Brassica/microbiología , Heces/microbiología , Microbiología de Alimentos , Raphanus/microbiología , Microbiología del Suelo , Microbiología del Agua , Riego Agrícola , Brassica/crecimiento & desarrollo , Productos Agrícolas , Escherichia coli/aislamiento & purificación , Maryland , Microbiota , Raphanus/crecimiento & desarrollo
18.
Sci Rep ; 9(1): 13409, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527753

RESUMEN

Standardized conditions for collection, preservation and storage of urine for microbiome research have not been established. We aimed to identify the effects of the use of preservative AssayAssure® (AA), and the effects of storage time and temperatures on reproducibility of urine microbiome results. We sequenced the V3-4 segment of the 16S rRNA gene to characterize the bacterial community in the urine of a cohort of women. Each woman provided a single voided urine sample, which was divided into aliquots and stored with and without AA, at three different temperatures (room temperature [RT], 4 °C, or -20 °C), and for various time periods up to 4 days. There were significant microbiome differences in urine specimens stored with and without AA at all temperatures, but the most significant differences were observed in alpha diversity (estimated number of taxa) at RT. Specimens preserved at 4 °C and -20 °C for up to 4 days with or without AA had no significant alpha diversity differences. However, significant alpha diversity differences were observed in samples stored without AA at RT. Generally, there was greater microbiome preservation with AA than without AA at all time points and temperatures, although not all results were statistically significant. Addition of AA preservative, shorter storage times, and colder temperatures are most favorable for urinary microbiome reproducibility.


Asunto(s)
Bacterias/aislamiento & purificación , Benchmarking , Microbiota , Preservación Biológica/métodos , ARN Ribosómico 16S/orina , Manejo de Especímenes/métodos , Bacterias/clasificación , Bacterias/genética , Femenino , Humanos , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Temperatura
19.
Front Microbiol ; 10: 2061, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555247

RESUMEN

Traditionally, medicine has held that some human body sites are sterile and that the introduction of microbes to these sites results in infections. This paradigm shifted significantly with the discovery of the human microbiome and acceptance of these commensal microbes living across the body. However, the central nervous system (CNS) is still believed by many to be sterile in healthy people. Using culture-independent methods, we examined the virome of cerebrospinal fluid (CSF) from a cohort of mostly healthy human subjects. We identified a community of DNA viruses, most of which were identified as bacteriophages. Compared to other human specimen types, CSF viromes were not ecologically distinct. There was a high alpha diversity cluster that included feces, saliva, and urine, and a low alpha diversity cluster that included CSF, body fluids, plasma, and breast milk. The high diversity cluster included specimens known to have many bacteria, while other specimens traditionally assumed to be sterile formed the low diversity cluster. There was an abundance of viruses shared among CSF, breast milk, plasma, and body fluids, while each generally shared less with urine, feces, and saliva. These shared viruses ranged across different virus families, indicating that similarities between these viromes represent more than just a single shared virus family. By identifying a virome in the CSF of mostly healthy individuals, it is now less likely that any human body site is devoid of microbes, which further highlights the need to decipher the role that viral communities may play in human health.

20.
Front Microbiol ; 10: 2371, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708882

RESUMEN

Despite their potential importance with regard to tobacco-related health outcomes, as well as their hypothesized role in the production of tobacco-specific N-nitrosamines, bacterial constituents of tobacco products lack characterization. Specifically, to our knowledge, there has been no comprehensive characterization of the effects of storage conditions on the bacterial communities associated with little cigars and cigarillos. To address this knowledge gap, we characterized the bacterial community composition of the tobacco and wrapper components of the following four products: Swisher Sweets Original; Swisher Sweets, Sweet Cherry; Cheyenne Cigars Full Flavor 100's; and Cheyenne Menthol Box. Each product was stored under three different conditions of temperature and relative humidity to mimic different user storage conditions: room (20°C 50% RH), refrigerator (5°C 18% RH) and pocket (25°C 30% RH). On days 0, 5, 9 and 14, subsamples were collected, the wrapper and tobacco were separated, and their total DNA was extracted separately and purified. Resulting DNA was then used in PCR assays targeting the V3 V4 region of the bacterial 16S rRNA gene, followed by sequencing using Illumina HiSeq 300bp PE. Resulting sequences were processed using the Quantitative Insights Into Microbial Ecology (QIIME) software package, followed by analyses in R using the Phyloseq and Vegan packages. A single bacterial phylum, Firmicutes, dominated in the wrapper subsamples whereas the tobacco subsamples were dominated by Proteobacteria. Cheyenne Menthol Box (CMB) samples were characterized by significant differential abundances for 23 bacterial operational taxonomic units (OTUs) in tobacco subsamples and 27 OTUs in the wrapper subsamples between day 0 and day 14 under all conditions. OTUs from the genera Acinetobacter and Bacillus significantly increased in the CMB tobacco subsamples, and OTUs from Bacillus, Streptococcus, Lactobacillus, and Enterococcus significantly increased in the CMB wrapper subsamples over time. These initial results suggest that the bacterial communities of little cigars and cigarillos are dynamic over time and varying storage conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA