Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(10): 2918-2927, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37150933

RESUMEN

A drug discovery and development pipeline is a prolonged and complex process that remains challenging for both computational methods and medicinal chemists and has not been able to be resolved using computational methods. Deep learning has been utilized in various fields and achieved tremendous success in designing novel molecules in the pharmaceutical industry. Herein, we use state-of-the-art techniques to propose a deep neural network, AIMLinker, to rapidly design and generate meaningful drug-like proteolysis targeting chimeras (PROTACs) analogs. The model extracts the structural information from the input fragments and generates linkers to incorporate them. We integrate filters in the model to exclude nondruggable structures guided via protein-protein complexes while retaining molecules with potent chemical properties. The novel PROTACs subsequently pass through molecular docking, taking root-mean-square deviation (RMSD), relative Gibbs free energy (ΔΔGbinding), molecular dynamics (MD) simulation, and free energy perturbation (FEP) calculations as the measurement criteria for testing the robustness and feasibility of the model. The generated novel PROTACs molecules possess similar structural information with superior binding affinity to the binding pockets compared to the existing CRBN-dBET6-BRD4 ternary complexes. We demonstrate the effectiveness of the methodology of leveraging AIMLinker to design novel compounds for PROTACs molecules exhibiting better chemical properties compared to the dBET6 crystal pose.


Asunto(s)
Diseño de Fármacos , Simulación del Acoplamiento Molecular , Proteolisis , Simulación de Dinámica Molecular
2.
Bioorg Med Chem ; 78: 117129, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542959

RESUMEN

To discover small molecules as acid alpha-glucosidase (GAA) stabilizers for potential benefits of the exogenous enzyme treatment toward Pompe disease cells, we started from the initial screening of the unique chemical space, consisting of sixteen stereoisomers of 2-aminomethyl polyhydroxylated pyrrolidines (ADMDPs) to find out two primary stabilizers 17 and 18. Further external or internal structural modifications of 17 and 18 were performed to increase structural diversity, followed by the protein thermal shift study to evaluate the GAA stabilizing ability. Fortunately, pyrrolidine 21, possessing an l-arabino-typed configuration pattern, was identified as a specific potent rh-GAA stabilizer, enabling the suppression of rh-GAA protein denaturation. In a cell-based Pompe model, co-administration of 21 with rh-GAA protein significantly improved enzymatic activity (up to 5-fold) compared to administration of enzyme alone. Potentially, pyrrolidine 21 enables the direct increase of ERT (enzyme replacement therapy) efficacy in cellulo and in vivo.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Humanos , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , alfa-Glucosidasas , Terapia de Reemplazo Enzimático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA