RESUMEN
BACKGROUND AND OBJECTIVE: Neutrophils-derived exosomes have been shown to cause tissue inflammation in many diseases, but their role in periodontitis, a neutrophil-mediated disease, is unknown. Here, we investigated the effect of neutrophil-like cells derived exosomes on osteogenic dysfunction of periodontal ligament stem cells (PDLSCs) in periodontitis. METHODS: Neutrophil-like cells were derived from HL-60 cells by dimethylsulfoxide stimulation. Exosomes were isolated by ultracentrifugation and characterized using transmission electron microscopy, nanoflow cytometry and western blot. MicroRNA-223 (miR-223) expression were analyzed by real-time PCR. Western blot, alkaline phosphatase (ALP), and alizarin red staining were conducted to assess whether exosomes could affect the osteogenic differentiation of PDLSCs. The expression of miR-223 was inhibited in PDLSCs by transfecting with miR-223 inhibitor. Cyclic guanosine monophosphate (cGMP) expression was determined by enzyme-linked immunosorbent assay. RESULTS: We found that miR-223 was significantly increased in neutrophils and neutrophil-like cells derived exosomes. Treatment with exosomes derived from neutrophil-like cells upregulated miR-223 expression and inhibited the osteogenic differentiation of PDLSCs, while transfection with miR-223 inhibitor significantly promoted PDLSCs osteogenic differentiation. In addition, co-treatment with KT5823, a cGMP-PKG pathway inhibitor, markedly abrogated the rescue effects of miR-223 inhibitor on the osteogenic differentiation of PDLSCs. CONCLUSIONS: Our findings suggest that neutrophil-like cells derived exosomes might inhibit osteogenic differentiation of PDLSCs by transporting miR-223 and regulating the cGMP-PKG signaling pathway.
Asunto(s)
MicroARNs , Periodontitis , Humanos , Osteogénesis/fisiología , Neutrófilos/metabolismo , Ligamento Periodontal , Células Madre , Diferenciación Celular/fisiología , Transducción de Señal/fisiología , Periodontitis/metabolismo , Células Cultivadas , MicroARNs/metabolismoRESUMEN
BACKGROUND: MicroRNA (miRNA) is accepted as a critical regulator of cell differentiation. However, whether microRNA-223 (miR-223) could affect the osteogenic differentiation of periodontal ligament (PDL)-derived cells is still unknown. The aim of this study was to explore the mechanisms underlying the roles of miR-223 in the osteogenesis of PDL-derived cells in periodontitis. METHODS: Microarray analysis and real-time polymerase chain reaction (RT-PCR) were used to identify difference in miR-223 expression pattern between healthy and inflamed gingival tissue. The target genes of miR-223 were predicted based on Targetscan and selected for enrichment analyses based on Metascape database. The gain-and loss-of-function experiments were performed to discuss roles of miR-223 and growth factor receptor genes in osteogenic differentiation of PDL-derived cells. The target relationship between miR-223 and growth factor receptor genes was confirmed by a dual luciferase assay. Osteogenic differentiation of PDL-derived cells was assessed by Alizarin red staining, RT-PCR and western blot detection of osteogenic markers, including osteocalcin (OCN), osteopontin (OPN) and runt-related transcription factor 2 (Runx2). RESULTS: MiR-223 was significantly increased in inflamed gingival tissues and down-regulated in PDL-derived cells during osteogenesis. The expression of miR-223 in gingival tissues was positively correlated with the clinical parameters in periodontitis patients. Overexpression of miR-223 markedly inhibited PDL-derived cells osteogenesis, which was evidenced by reduced Alizarin red staining and osteogenic markers expressions. Furthermore, two growth factor receptor genes, including fibroblast growth factor receptor 2 (FGFR2) and transforming growth factor beta receptor 2 (TGFßR2), were revealed to be direct targets of miR-223 and shown to undergo up-regulation in PDL-derived cells during osteogenesis. Moreover, suppression of FGFR2 or TGFßR2 dramatically blocked PDL-derived cells osteogenic differentiation. CONCLUSIONS: Our study provides novel evidence that miR-223 can be induced by periodontitis and acts as a negative regulator of PDL-derived cells osteogenesis by targeting two growth factor receptors (TGFßR2 and FGFR2).
Asunto(s)
MicroARNs , Periodontitis , Antraquinonas , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis/genética , Osteopontina/metabolismo , Ligamento Periodontal , Periodontitis/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento Transformadores betaRESUMEN
The emergence of digital surgical guide templates in alveolar surgery has rapidly increased in the past decade, coinciding with the advancements in 3D printing technology. In contrast to conventional freehand procedures, the utilization of digital templates serves as a 'bridge' that facilitates the extraction of impacted teeth with expedited and accurate intraoperative localization, resulting in a notable reduction in surgical duration, minimized trauma, and lowered risk. However, there is significant scope for enhancements in surgical techniques and refinement of surgical guide templates. The purpose of our study was to employ an innovative surgical guide template founded on computer-aided design for the purpose of executing flapless extraction of deeply impacted teeth and investigating a surgical approach that is more effective, secure, and less invasive.
RESUMEN
Methods: The differentially expressed genes (DEGs) were identified using periodontitis-related microarray from the GEO database, and OS-genes were extracted from GeneCards database. The intersection of the OS-genes and the DEGs was considered as oxidative stress-related DEGs (OS-DEGs) in periodontitis. The Pearson correlation and protein-protein interaction analyses were used to screen key OS-genes. Gene set enrichment, functional enrichment, and pathway enrichment analyses were performed in OS-genes. Based on key OS-genes, a risk score model was constructed through logistic regression, receiver operating characteristic curve, and stratified analyses. Results: In total, 74 OS-DEGs were found in periodontitis, including 65 upregulated genes and 9 downregulated genes. Six of them were identified as key OS-genes (CXCR4, SELL, FCGR3B, FCGR2B, PECAM1, and ITGAL) in periodontitis. All the key OS-genes were significantly upregulated and associated with the increased risk of periodontitis. Functional enrichment analysis showed that these genes were mainly associated with leukocyte cell-cell adhesion, phagocytosis, and cellular extravasation. Pathway analysis revealed that these genes were involved in several signaling pathways, such as leukocyte transendothelial migration and osteoclast differentiation. Conclusion: In this study, we screened six key OS-genes that were screened as risk factors of periodontitis. We also identified multiple signaling pathways that might play crucial roles in regulating oxidative stress damage in periodontitis. In the future, more experiments need to be carried out to validate our current findings.