Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pflugers Arch ; 468(8): 1489-503, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27271044

RESUMEN

P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.


Asunto(s)
Calcio/metabolismo , Epitelio/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Transducción de Señal/fisiología , Bronquios/metabolismo , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estrógenos/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Respiratoria/metabolismo
2.
Am J Respir Cell Mol Biol ; 40(6): 733-45, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19011163

RESUMEN

Apical and/or basolateral membranes of polarized epithelia express P2Y receptors, which regulate the transport of fluid and electrolytes. In the airway, P2Y receptors modulate Cl(-) secretion through the phospholipase C and calcium signaling pathways. Recent evidence suggests that P2Y(6) receptors are expressed in bronchial epithelium and coupled to the cAMP/protein kinase A (PKA) pathways. We examined P2Y receptor subtype expression, including P2Y(6,) and the effect of extracellular nucleotides on basal short-circuit current (I(SC)) and intracellular calcium concentration ([Ca(2+)](i)) in a human bronchial epithelial cell line (16HBE14o-). Real-time PCR demonstrated P2Y(1), P2Y(2), P2Y(4), and P2Y(6) receptor expression and confirmed that transcript levels were not altered when cells were grown under varied conditions. It was determined that P2Y agonists (ATP, UTP, UDP) stimulated a concomitant increase in I(SC) and [Ca(2+)](i). Apical nucleotides stimulated an increase in [Ca(2+)](i) more efficiently than basolateral nucleotides; however, P2Y agonistic effects on I(SC) were greater when applied basolaterally. Since the P2Y(6) receptors differentially regulate apical and basolateral UDP-induced I(SC) and [Ca(2+)](i), we investigated membrane-resident P2Y(6) receptor functions using Cl(-) or K(+) channels blockers. Apical and basolateral UDP activation of I(SC) was inhibited by applying DIDS apically or TRAM-34 and clotrimazole basolaterally. Although both apical and basolateral UDP increased PKA activity, only apical UDP-induced I(SC) was sensitive to a CFTR inhibitor. These data demonstrate that P2Y agonists stimulate Ca(2+)-dependent Cl(-) secretion across human bronchial epithelia and that the cAMP/PKA pathway regulates apical but not basolateral P2Y(6) receptor-coupled ion transport in human bronchial epithelia.


Asunto(s)
Bronquios/citología , Cloruros/metabolismo , Células Epiteliales/metabolismo , Receptores Purinérgicos P2/metabolismo , Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cartilla de ADN/química , Células Epiteliales/citología , Humanos , Modelos Biológicos , Nistatina/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fosfolipasas de Tipo C/metabolismo
3.
PLoS One ; 9(9): e106235, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25243587

RESUMEN

P2Y receptors are expressed in virtually all epithelia and are responsible for the control of fluid and electrolyte transport. In asthmatic inflammation, the bronchial epithelia are damaged by eosinophil-derived, highly toxic cationic proteins, such as major basic protein (MBP). Consequently, extracellular nucleotides are released into the extracellular space from airway epithelial cells, and act in an autocrine or paracrine fashion to regulate immune functions. Our data show damage to the human bronchial epithelial cell line, 16HBE14o-, by poly-L-arginine-induced UDP release into the extracellular medium. Activation of P2Y6 receptor by its natural ligand, UDP, or its specific agonist, MRS 2693, led to the production of two proinflammatory cytokines, interleukin (IL)-6 and IL-8. This may have resulted from increased IL-6 and IL-8 mRNA expression, and activation of p38 and ERK1/2 MAPK, and NF-κB pathways. Our previous study demonstrated that UDP stimulated transepithelial Cl- secretion via both Ca2+- and cAMP-dependent pathways in 16HBE14o- epithelia. This was further confirmed in this study by simultaneous imaging of Ca2+ and cAMP levels in single cells using the Fura-2 fluorescence technique and a FRET-based approach, respectively. Moreover, the P2Y6 receptor-mediated production of IL-6 and IL-8 was found to be dependent on Ca2+, but not the cAMP/PKA pathway. Together, these studies show that nucleotides released during the airway inflammatory processes will activate P2Y6 receptors, which will lead to further release of inflammatory cytokines. The secretion of cytokines and the formation of such "cytokine networks" play an important role in sustaining the airway inflammatory disease.


Asunto(s)
Bronquios/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo , Receptores Purinérgicos P2/metabolismo , Mucosa Respiratoria/metabolismo , Bronquios/citología , Línea Celular , Células Epiteliales/citología , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fosforilación , Mucosa Respiratoria/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA