Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Med ; 18(1): 384, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33302931

RESUMEN

BACKGROUND: Valid cause of death data are essential for health policy formation. The quality of medical certification of cause of death (MCCOD) by physicians directly affects the utility of cause of death data for public policy and hospital management. Whilst training in correct certification has been provided for physicians and medical students, the impact of training is often unknown. This study was conducted to systematically review and meta-analyse the effectiveness of training interventions to improve the quality of MCCOD. METHODS: This review was registered in the International Prospective Register of Systematic Reviews (PROSPERO; Registration ID: CRD42020172547) and followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. CENTRAL, Ovid MEDLINE and Ovid EMBASE databases were searched using pre-defined search strategies covering the eligibility criteria. Studies were selected using four screening questions using the Distiller-SR software. Risk of bias assessments were conducted with GRADE recommendations and ROBINS-I criteria for randomised and non-randomised interventions, respectively. Study selection, data extraction and bias assessments were performed independently by two reviewers with a third reviewer to resolve conflicts. Clinical, methodological and statistical heterogeneity assessments were conducted. Meta-analyses were performed with Review Manager 5.4 software using the 'generic inverse variance method' with risk difference as the pooled estimate. A 'summary of findings' table was prepared using the 'GRADEproGDT' online tool. Sensitivity analyses and narrative synthesis of the findings were also performed. RESULTS: After de-duplication, 616 articles were identified and 21 subsequently selected for synthesis of findings; four underwent meta-analysis. The meta-analyses indicated that selected training interventions significantly reduced error rates among participants, with pooled risk differences of 15-33%. Robustness was identified with the sensitivity analyses. The findings of the narrative synthesis were similarly suggestive of favourable outcomes for both physicians and medical trainees. CONCLUSIONS: Training physicians in correct certification improves the accuracy and policy utility of cause of death data. Investment in MCCOD training activities should be considered as a key component of strategies to improve vital registration systems given the potential of such training to substantially improve the quality of cause of death data.


Asunto(s)
Causas de Muerte/tendencias , Certificación/normas , Educación/normas , Calidad de la Atención de Salud/normas , Humanos , Proyectos de Investigación
3.
PLoS One ; 16(11): e0259667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34748575

RESUMEN

BACKGROUND: Correct certification of cause of death by physicians (i.e. completing the medical certificate of cause of death or MCCOD) and correct coding according to International Classification of Diseases (ICD) rules are essential to produce quality mortality statistics to inform health policy. Despite clear guidelines, errors in medical certification are common. This study objectively measures the impact of different medical certification errors upon the selection of the underlying cause of death. METHODS: A sample of 1592 error-free MCCODs were selected from the 2017 United States multiple cause of death data. The ten most common types of errors in completing the MCCOD (according to published studies) were individually simulated on the error-free MCCODs. After each simulation, the MCCODs were coded using Iris automated mortality coding software. Chance-corrected concordance (CCC) was used to measure the impact of certification errors on the underlying cause of death. Weights for each error type and Socio-demographic Index (SDI) group (representing different mortality conditions) were calculated from the CCC and categorised (very high, high, medium and low) to describe their effect on cause of death accuracy. FINDINGS: The only very high impact error type was reporting an ill-defined condition as the underlying cause of death. High impact errors were found to be reporting competing causes in Part 1 [of the death certificate] and illegibility, with medium impact errors being reporting underlying cause in Part 2 [of the death certificate], incorrect or absent time intervals and reporting contributory causes in Part 1, and low impact errors comprising multiple causes per line and incorrect sequence. There was only small difference in error importance between SDI groups. CONCLUSIONS: Reporting an ill-defined condition as the underlying cause of death can seriously affect the coding outcome, while other certification errors were mitigated through the correct application of mortality coding rules. Training of physicians in not reporting ill-defined conditions on the MCCOD and mortality coders in correct coding practices and using Iris should be important components of national strategies to improve cause of death data quality.


Asunto(s)
Causas de Muerte , Recolección de Datos , Humanos , Clasificación Internacional de Enfermedades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA