Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 87: 585-620, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494239

RESUMEN

2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.


Asunto(s)
Ácidos Cetoglutáricos/metabolismo , Oxigenasas/metabolismo , Animales , Biocatálisis , Colágeno/biosíntesis , Humanos , Hidroxilación , Modelos Biológicos , Modelos Moleculares , Oxidación-Reducción , Oxigenasas/química , Conformación Proteica , Especificidad por Sustrato
2.
J Biol Chem ; 298(6): 102020, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537551

RESUMEN

The aspariginyl hydroxylase human factor inhibiting hypoxia-inducible factor (FIH) is an important regulator of the transcriptional activity of hypoxia-inducible factor. FIH also catalyzes the hydroxylation of asparaginyl and other residues in ankyrin repeat domain-containing proteins, including apoptosis stimulating of p53 protein (ASPP) family members. ASPP2 is reported to undergo a single FIH-catalyzed hydroxylation at Asn-986. We report biochemical and crystallographic evidence showing that FIH catalyzes the unprecedented post-translational hydroxylation of both asparaginyl residues in "VNVN" and related motifs of ankyrin repeat domains in ASPPs (i.e., ASPP1, ASPP2, and iASPP) and the related ASB11 and p18-INK4C proteins. Our biochemical results extend the substrate scope of FIH catalysis and may have implications for its biological roles, including in the hypoxic response and ASPP family function.


Asunto(s)
Repetición de Anquirina , Oxigenasas de Función Mixta , Proteínas Represoras , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Reguladoras de la Apoptosis , Catálisis , Humanos , Hidroxilación , Hipoxia , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo
3.
Proteins ; 91(11): 1510-1524, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37449559

RESUMEN

The hypoxia-inducible factor (HIF) prolyl-hydroxylases (human PHD1-3) catalyze prolyl hydroxylation in oxygen-dependent degradation (ODD) domains of HIFα isoforms, modifications that signal for HIFα proteasomal degradation in an oxygen-dependent manner. PHD inhibitors are used for treatment of anemia in kidney disease. Increased erythropoietin (EPO) in patients with familial/idiopathic erythrocytosis and pulmonary hypertension is associated with mutations in EGLN1 (PHD2) and EPAS1 (HIF2α); a drug inhibiting HIF2α activity is used for clear cell renal cell carcinoma (ccRCC) treatment. We report crystal structures of PHD2 complexed with the C-terminal HIF2α-ODD in the presence of its 2-oxoglutarate cosubstrate or N-oxalylglycine inhibitor. Combined with the reported PHD2.HIFα-ODD structures and biochemical studies, the results inform on the different PHD.HIFα-ODD binding modes and the potential effects of clinically observed mutations in HIFα and PHD2 genes. They may help enable new therapeutic avenues, including PHD isoform-selective inhibitors and sequestration of HIF2α by the PHDs for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Oxígeno/metabolismo , Procolágeno-Prolina Dioxigenasa/química , Procolágeno-Prolina Dioxigenasa/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Prolil Hidroxilasas , Isoformas de Proteínas
4.
J Biol Chem ; 295(49): 16545-16561, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32934009

RESUMEN

In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.


Asunto(s)
Dictyostelium/enzimología , Prolil Hidroxilasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cinética , Simulación de Dinámica Molecular , Oxígeno/metabolismo , Prolil Hidroxilasas/química , Prolil Hidroxilasas/genética , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Quinasas Asociadas a Fase-S/química , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
5.
Angew Chem Int Ed Engl ; 60(26): 14657-14663, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887099

RESUMEN

Aspartate/asparagine-ß-hydroxylase (AspH) is a human 2-oxoglutarate (2OG) and FeII oxygenase that catalyses C3 hydroxylations of aspartate/asparagine residues of epidermal growth factor-like domains (EGFDs). Unusually, AspH employs two histidine residues to chelate FeII rather than the typical triad of two histidine and one glutamate/aspartate residue. We report kinetic, inhibition, and crystallographic studies concerning human AspH variants in which either of its FeII binding histidine residues are substituted for alanine. Both the H725A and, in particular, the H679A AspH variants retain substantial catalytic activity. Crystal structures clearly reveal metal-ligation by only a single protein histidine ligand. The results have implications for the functional assignment of 2OG oxygenases and for the design of non-protein biomimetic catalysts.


Asunto(s)
Compuestos Ferrosos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Asparagina/química , Asparagina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biocatálisis , Cristalografía por Rayos X , Compuestos Ferrosos/química , Humanos , Ligandos , Oxigenasas de Función Mixta/genética , Modelos Moleculares
6.
J Biol Chem ; 294(30): 11637-11652, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31147442

RESUMEN

JmjC domain-containing protein 6 (JMJD6) is a 2-oxoglutarate (2OG)-dependent oxygenase linked to various cellular processes, including splicing regulation, histone modification, transcriptional pause release, hypoxia sensing, and cancer. JMJD6 is reported to catalyze hydroxylation of lysine residue(s) of histones, the tumor-suppressor protein p53, and splicing regulatory proteins, including u2 small nuclear ribonucleoprotein auxiliary factor 65-kDa subunit (U2AF65). JMJD6 is also reported to catalyze N-demethylation of N-methylated (both mono- and di-methylated) arginine residues of histones and other proteins, including HSP70 (heat-shock protein 70), estrogen receptor α, and RNA helicase A. Here, we report MS- and NMR-based kinetic assays employing purified JMJD6 and multiple substrate fragment sequences, the results of which support the assignment of purified JMJD6 as a lysyl hydroxylase. By contrast, we did not observe N-methyl arginyl N-demethylation with purified JMJD6. Biophysical analyses, including crystallographic analyses of JMJD6Δ344-403 in complex with iron and 2OG, supported its assignment as a lysyl hydroxylase rather than an N-methyl arginyl-demethylase. The screening results supported some, but not all, of the assigned JMJD6 substrates and identified other potential JMJD6 substrates. We envision these results will be useful in cellular and biological work on the substrates and functions of JMJD6 and in the development of selective inhibitors of human 2OG oxygenases.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Catálisis , Cristalografía por Rayos X , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/metabolismo , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji/química , Cinética , Lisina/metabolismo , Conformación Proteica , Especificidad por Sustrato
7.
Nat Chem Biol ; 14(10): 988, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29950663

RESUMEN

In the version of this article initially published, authors Sarah E. Wilkins, Charlotte D. Eaton, Martine I. Abboud and Maximiliano J. Katz were incorrectly included in the equal contributions footnote in the affiliations list. Footnote number seven linking to the equal contributions statement should be present only for Suzana Markolovic and Qinqin Zhuang, and the statement should read "These authors contributed equally: Suzana Markolovic, Qinqin Zhuang." The error has been corrected in the HTML and PDF versions of the article.

8.
Nat Chem Biol ; 14(7): 688-695, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915238

RESUMEN

Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(II)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.


Asunto(s)
Biocatálisis , GTP Fosfohidrolasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , GTP Fosfohidrolasas/química , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji/química , Modelos Moleculares
9.
Nature ; 510(7505): 422-426, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24814345

RESUMEN

2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(ε)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.


Asunto(s)
Eucariontes/enzimología , Modelos Moleculares , Oxigenasas/química , Células Procariotas/enzimología , Ribosomas/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Eucariontes/clasificación , Humanos , Oxigenasas/metabolismo , Filogenia , Células Procariotas/clasificación , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
10.
Chembiochem ; 19(21): 2262-2267, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30144273

RESUMEN

In animals, the response to chronic hypoxia is mediated by upregulation of the α,ß-heterodimeric hypoxia-inducible factors (HIFs). Levels of HIFα isoforms, but not HIFß, are regulated by their post-translational modification as catalysed by prolyl hydroxylase domain enzymes (PHDs). Different roles for the human HIF-1/2α isoforms and their two oxygen-dependent degradation domains (ODDs) are proposed. We report kinetic and NMR analyses of the ODD selectivity of the catalytic domain of wild-type PHD2 (which is conserved in nearly all animals) and clinically observed variants. Studies using Ala scanning and "hybrid" ODD peptides imply that the relatively rigid conformation of the (hydroxylated) proline plays an important role in ODD binding. They also reveal differential roles in binding for the residues on the N- and C-terminal sides of the substrate proline. The overall results indicate how the PHDs achieve selectivity for HIFα ODDs and might be of use in identifying substrate-selective PHD inhibitors.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dominio Catalítico , Humanos , Hidroxilación , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Especificidad por Sustrato
11.
Biochem J ; 468(2): 191-202, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25997831

RESUMEN

The Jumonji domain-containing protein 6 (Jmjd6) is a member of the superfamily of non-haem iron(II) and 2-oxoglutarate (2OG)-dependent oxygenases; it plays an important developmental role in higher animals. Jmjd6 was initially assigned a role as the phosphatidylserine receptor responsible for engulfment of apoptotic cells but this now seems unlikely. Jmjd6 has been shown to be a nuclear localized protein with a JmjC domain comprising a distorted double-stranded ß-helical structure characteristic of the 2OG-dependent oxygenases. Jmjd6 was subsequently assigned a role in catalysing N-methyl-arginine residue demethylation on the N-terminus of the human histones H3 and H4; however, this function is also subject to conflicting reports. Jmjd6 does catalyse 2OG-dependent C-5 hydroxylation of lysine residues in mRNA splicing-regulatory proteins and histones; there is also accumulating evidence that Jmjd6 plays a role in splicing (potentially in an iron- and oxygen-dependent manner) as well as in other processes regulating gene expression, including transcriptional pause release. Moreover, a link with tumour progression has been suggested. In the present review we look at biochemical, structural and cellular work on Jmjd6, highlighting areas of controversy and consensus.


Asunto(s)
Fenómenos Fisiológicos Celulares , Histona Demetilasas con Dominio de Jumonji/química , Histona Demetilasas con Dominio de Jumonji/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
12.
Biochim Biophys Acta ; 1839(12): 1416-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24859458

RESUMEN

N-Methylation of lysine and arginine residues has emerged as a major mechanism of transcriptional regulation in eukaryotes. In humans, N(ε)-methyllysine residue demethylation is catalysed by two distinct subfamilies of demethylases (KDMs), the flavin-dependent KDM1 subfamily and the 2-oxoglutarate- (2OG) dependent JmjC subfamily, which both employ oxidative mechanisms. Modulation of histone methylation status is proposed to be important in epigenetic regulation and has substantial medicinal potential for the treatment of diseases including cancer and genetic disorders. This article provides an introduction to the enzymology of the KDMs and the therapeutic possibilities and challenges associated with targeting them, followed by a review of reported KDM inhibitors and their mechanisms of action from kinetic and structural perspectives.


Asunto(s)
Histona Demetilasas/metabolismo , Terapia Molecular Dirigida/métodos , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/uso terapéutico , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/química , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Unión Proteica
13.
Biochem J ; 463(3): 363-72, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25120187

RESUMEN

The prolyl hydroxylase domain proteins (PHDs) catalyse the post-translational hydroxylation of the hypoxia-inducible factor (HIF), a modification that regulates the hypoxic response in humans. The PHDs are Fe(II)/2-oxoglutarate (2OG) oxygenases; their catalysis is proposed to provide a link between cellular HIF levels and changes in O2 availability. Transient kinetic studies have shown that purified PHD2 reacts slowly with O2 compared with some other studied 2OG oxygenases, a property which may be related to its hypoxia-sensing role. PHD2 forms a stable complex with Fe(II) and 2OG; crystallographic and kinetic analyses indicate that an Fe(II)-co-ordinated water molecule, which must be displaced before O2 binding, is relatively stable in the active site of PHD2. We used active site substitutions to investigate whether these properties are related to the slow reaction of PHD2 with O2. While disruption of 2OG binding in a R383K variant did not accelerate O2 activation, we found that substitution of the Fe(II)-binding aspartate for a glutamate residue (D315E) manifested significantly reduced Fe(II) binding, yet maintained catalytic activity with a 5-fold faster reaction with O2. The results inform on how the precise active site environment of oxygenases can affect rates of O2 activation and provide insights into limiting steps in PHD catalysis.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Hierro/química , Ácidos Cetoglutáricos/química , Oxígeno/química , Dominio Catalítico , Cationes Bivalentes , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Isoquinolinas/química , Cinética , Manganeso/química , Mutagénesis Sitio-Dirigida , Oligopéptidos/química , Unión Proteica , Agua/química , Zinc/química
14.
Biochemistry ; 53(15): 2483-93, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24684493

RESUMEN

Deacetoxycephalosporin C synthase (DAOCS) catalyzes the oxidative ring expansion of penicillin N (penN) to give deacetoxycephalosporin C (DAOC), which is the committed step in the biosynthesis of the clinically important cephalosporin antibiotics. DAOCS belongs to the family of non-heme iron(II) and 2-oxoglutarate (2OG) dependent oxygenases, which have substantially conserved active sites and are proposed to employ a consensus mechanism proceeding via formation of an enzyme·Fe(II)·2OG·substrate ternary complex. Previously reported kinetic and crystallographic studies led to the proposal of an unusual "ping-pong" mechanism for DAOCS, which was significantly different from other members of the 2OG oxygenase superfamily. Here we report pre-steady-state kinetics and binding studies employing mass spectrometry and NMR on the DAOCS-catalyzed penN ring expansion that demonstrate the viability of ternary complex formation in DAOCS catalysis, arguing for the generality of the proposed consensus mechanism for 2OG oxygenases.


Asunto(s)
Transferasas Intramoleculares/química , Ácidos Cetoglutáricos/química , Oxigenasas/química , Proteínas de Unión a las Penicilinas/química , Catálisis , Cristalografía por Rayos X , Cinética , Espectrometría de Masas , Resonancia Magnética Nuclear Biomolecular
15.
Nat Chem Biol ; 8(12): 960-962, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23103944

RESUMEN

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas/metabolismo , Células Procariotas/metabolismo , Ribosomas/metabolismo , Animales , Arginina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Dioxigenasas , Inhibidores Enzimáticos/farmacología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Histidina/metabolismo , Histona Demetilasas , Humanos , Hidroxilación , Espectroscopía de Resonancia Magnética , Oxigenasas de Función Mixta/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Oxigenasas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo
16.
EMBO Rep ; 12(5): 463-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21460794

RESUMEN

Mutations in isocitrate dehydrogenases (IDHs) have a gain-of-function effect leading to R(-)-2-hydroxyglutarate (R-2HG) accumulation. By using biochemical, structural and cellular assays, we show that either or both R- and S-2HG inhibit 2-oxoglutarate (2OG)-dependent oxygenases with varying potencies. Half-maximal inhibitory concentration (IC(50)) values for the R-form of 2HG varied from approximately 25 µM for the histone N(ɛ)-lysine demethylase JMJD2A to more than 5 mM for the hypoxia-inducible factor (HIF) prolyl hydroxylase. The results indicate that candidate oncogenic pathways in IDH-associated malignancy should include those that are regulated by other 2OG oxygenases than HIF hydroxylases, in particular those involving the regulation of histone methylation.


Asunto(s)
Glutaratos/metabolismo , Histona Demetilasas/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Modelos Moleculares , Neoplasias/enzimología , Transducción de Señal/fisiología , Línea Celular Tumoral , Cristalografía , Humanos , Concentración 50 Inhibidora , Isocitrato Deshidrogenasa/metabolismo , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Oxigenasas de Función Mixta , Mutación/genética , Neoplasias/genética , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/química
17.
Org Biomol Chem ; 11(5): 732-745, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23151668

RESUMEN

Inhibition of the hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD or EGLN enzymes) is of interest for the treatment of anemia and ischemia-related diseases. Most PHD inhibitors work by binding to the single ferrous ion and competing with 2-oxoglutarate (2OG) co-substrate for binding at the PHD active site. Non-specific iron chelators also inhibit the PHDs, both in vitro and in cells. We report the identification of dual action PHD inhibitors, which bind to the active site iron and also induce the binding of a second iron ion at the active site. Following analysis of small-molecule iron complexes and application of non-denaturing protein mass spectrometry to assess PHD2·iron·inhibitor stoichiometry, selected diacylhydrazines were identified as PHD2 inhibitors that induce the binding of a second iron ion. Some compounds were shown to inhibit the HIF hydroxylases in human hepatoma and renal carcinoma cell lines.


Asunto(s)
Hidrazinas/química , Hidrazinas/farmacología , Hierro/metabolismo , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Procolágeno-Prolina Dioxigenasa/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Simulación del Acoplamiento Molecular , Procolágeno-Prolina Dioxigenasa/química , Unión Proteica/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray
18.
J Biol Chem ; 286(9): 7648-60, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21177872

RESUMEN

Factor-inhibiting hypoxia-inducible factor (FIH) catalyzes the ß-hydroxylation of an asparagine residue in the C-terminal transcriptional activation domain of the hypoxia inducible factor (HIF), a modification that negatively regulates HIF transcriptional activity. FIH also catalyzes the hydroxylation of highly conserved Asn residues within the ubiquitous ankyrin repeat domain (ARD)-containing proteins. Hydroxylation has been shown to stabilize localized regions of the ARD fold in the case of a three-repeat consensus ankyrin protein, but this phenomenon has not been demonstrated for the extensive naturally occurring ARDs. Here we report that the cytoskeletal ankyrin family are substrates for FIH-catalyzed hydroxylations. We show that the ARD of ankyrinR is multiply hydroxylated by FIH both in vitro and in endogenous proteins purified from human and mouse erythrocytes. Hydroxylation of the D34 region of ankyrinR ARD (ankyrin repeats 13-24) increases its conformational stability and leads to a reduction in its interaction with the cytoplasmic domain of band 3 (CDB3), demonstrating the potential for FIH-catalyzed hydroxylation to modulate protein-protein interactions. Unexpectedly we found that aspartate residues in ankyrinR and ankyrinB are hydroxylated and that FIH-catalyzed aspartate hydroxylation also occurs in other naturally occurring AR sequences. The crystal structure of an FIH variant in complex with an Asp-substrate peptide together with NMR analyses of the hydroxylation product identifies the 3S regio- and stereoselectivity of the FIH-catalyzed Asp hydroxylation, revealing a previously unprecedented posttranslational modification.


Asunto(s)
Ancirinas/metabolismo , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Citoesqueleto/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Ancirinas/química , Ancirinas/genética , Dominio Catalítico , Cristalografía , Células HEK293 , Humanos , Hidroxilación/fisiología , Oxigenasas de Función Mixta , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/química , Transducción de Señal/fisiología
19.
Sci Rep ; 12(1): 20680, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450832

RESUMEN

JmjC (Jumonji-C) domain-containing 5 (JMJD5) plays important roles in circadian regulation in plants and humans and is involved in embryonic development and cell proliferation. JMJD5 is a 2-oxoglutarate (2OG) and Fe(II) dependent oxygenase of the JmjC subfamily, which includes histone Nε-methyl lysine-demethylases (KDMs) and hydroxylases catalysing formation of stable alcohol products. JMJD5 is reported to have KDM activity, but has been shown to catalyse C-3 hydroxylation of arginine residues in sequences from human regulator of chromosome condensation domain-containing protein 1 (RCCD1) and ribosomal protein S6 (RPS6) in vitro. We report crystallographic analyses of human JMJD5 complexed with 2OG analogues, including the widely used hypoxia mimic pyridine-2,4-dicarboxylate, both D- and L-enantiomers of the oncometabolite 2-hydroxyglutarate, and a cyclic N-hydroxyimide. The results support the assignment of JMJD5 as a protein hydroxylase and reveal JMJD5 has an unusually compact 2OG binding pocket suitable for exploitation in development of selective inhibitors. They will be useful in the development of chemical probes to investigate the physiologically relevant roles of JMJD5 in circadian rhythm and development and explore its potential as a medicinal chemistry target.


Asunto(s)
Ácidos Cetoglutáricos , Oxigenasas , Femenino , Embarazo , Humanos , Ritmo Circadiano , Psicoterapia , Sitios de Unión , Oxigenasas de Función Mixta
20.
Sci Rep ; 12(1): 6065, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410347

RESUMEN

The JmjC family of 2-oxoglutarate dependent oxygenases catalyse a range of hydroxylation and demethylation reactions in humans and other animals. Jumonji domain-containing 7 (JMJD7) is a JmjC (3S)-lysyl-hydroxylase that catalyses the modification of Developmentally Regulated GTP Binding Proteins 1 and 2 (DRG1 and 2); JMJD7 has also been reported to have histone endopeptidase activity. Here we report biophysical and biochemical studies on JMJD7 from Drosophila melanogaster (dmJMJD7). Notably, crystallographic analyses reveal that the unusual dimerization mode of JMJD7, which involves interactions between both the N- and C-terminal regions of both dmJMJD7 monomers and disulfide formation, is conserved in human JMJD7 (hsJMJD7). The results further support the assignment of JMJD7 as a lysyl hydroxylase and will help enable the development of selective inhibitors for it and other JmjC oxygenases.


Asunto(s)
Drosophila melanogaster , Histona Demetilasas con Dominio de Jumonji , Animales , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Humanos , Hidroxilación , Histona Demetilasas con Dominio de Jumonji/metabolismo , Oxigenasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA