Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(43): 19799-19812, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260789

RESUMEN

Micelleplexes show great promise as effective polymeric delivery systems for nucleic acids. Although studies have shown that spherical micelleplexes can exhibit superior cellular transfection to polyplexes, to date there has been no report on the effects of micelleplex morphology on cellular transfection. In this work, we prepared precision, length-tunable poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC16-b-PDMAEMA131) nanofiber micelleplexes and compared their properties and transfection activity to those of the equivalent nanosphere micelleplexes and polyplexes. We studied the DNA complexation process in detail via a range of techniques including cryo-transmission electron microscopy, atomic force microscopy, dynamic light scattering, and ζ-potential measurements, thereby examining how nanofiber micelleplexes form, as well the key differences that exist compared to nanosphere micelleplexes and polyplexes in terms of DNA loading and colloidal stability. The effects of particle morphology and nanofiber length on the transfection and cell viability of U-87 MG glioblastoma cells with a luciferase plasmid were explored, revealing that short nanofiber micelleplexes (length < ca. 100 nm) were the most effective delivery vehicle examined, outperforming nanosphere micelleplexes, polyplexes, and longer nanofiber micelleplexes as well as the Lipofectamine 2000 control. This study highlights the potential importance of 1D micelleplex morphologies for achieving optimal transfection activity and provides a fundamental platform for the future development of more effective polymeric nucleic acid delivery vehicles.


Asunto(s)
Nanofibras , Ácidos Nucleicos , Micelas , Transfección , Polímeros , ADN
2.
Biomater Sci ; 11(10): 3512-3523, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992650

RESUMEN

As nucleic acid (NA) technologies continue to revolutionize medicine, new delivery vehicles are needed to effectively transport NA cargoes into cells. Uniform and length-tunable nanofiber micelleplexes have recently shown promise as versatile polymeric delivery vehicles for plasmid DNA, however the effects of several key parameters on micelleplex transfection and stability remain unknown. In this work, we compare poly(fluorenetrimethylenecarbonate)-b-poly(2-(dimethylamino)ethyl methacrylate) (PFTMC-b-PDMAEMA) nanofiber micelleplexes to nanosphere micelleplexes and PDMAEMA polyplexes, examining the effects of complexation buffer, the temporal and serum stability of nanofiber micelleplexes, as well as the effects of cell density, cell type, and polymer DPn upon transfection efficiency and cell viability. These studies are vital for understanding the formation and biological activity of micelleplexes in more detail and should inform the future design of more advanced polymeric NA delivery systems.


Asunto(s)
Nanofibras , Metacrilatos , ADN , Polímeros , Nylons , Transfección
3.
STAR Protoc ; 3(2): 101348, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35509974

RESUMEN

3D bioprinting-a type of additive manufacturing-can create 3D tissue constructs resembling in vivo tissues. Here, we present a protocol for 3D printing neural tissues using Axolotl Biosciences' fibrin-based bioink and the CELLINK BIO X bioprinter with a pneumatic printhead. This workflow can be applied to printing 3D tissue models using a variety of cell lines and any chemically crosslinked bioink. These 3D-printed tissue models can be used for applications such as drug screening and disease modeling in vitro.


Asunto(s)
Bioimpresión , Tejido Nervioso , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
4.
Bioengineering (Basel) ; 8(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672626

RESUMEN

The most prevalent form of bioprinting-extrusion bioprinting-can generate structures from a diverse range of materials and viscosities. It can create personalized tissues that aid in drug testing and cancer research when used in combination with natural bioinks. This paper reviews natural bioinks and their properties and functions in hard and soft tissue engineering applications. It discusses agarose, alginate, cellulose, chitosan, collagen, decellularized extracellular matrix, dextran, fibrin, gelatin, gellan gum, hyaluronic acid, Matrigel, and silk. Multi-component bioinks are considered as a way to address the shortfalls of individual biomaterials. The mechanical, rheological, and cross-linking properties along with the cytocompatibility, cell viability, and printability of the bioinks are detailed as well. Future avenues for research into natural bioinks are then presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA