Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Development ; 137(17): 2961-71, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20699298

RESUMEN

In vertebrates, body musculature originates from somites, whereas head muscles originate from the cranial mesoderm. Neck muscles are located in the transition between these regions. We show that the chick occipital lateral plate mesoderm has myogenic capacity and gives rise to large muscles located in the neck and thorax. We present molecular and genetic evidence to show that these muscles not only have a unique origin, but additionally display a distinct temporal development, forming later than any other muscle group described to date. We further report that these muscles, found in the body of the animal, develop like head musculature rather than deploying the programme used by the trunk muscles. Using mouse genetics we reveal that these muscles are formed in trunk muscle mutants but are absent in head muscle mutants. In concordance with this conclusion, their connective tissue is neural crest in origin. Finally, we provide evidence that the mechanism by which these neck muscles develop is conserved in vertebrates.


Asunto(s)
Mesodermo/embriología , Desarrollo de Músculos , Músculos del Cuello/embriología , Animales , Animales Modificados Genéticamente , Proteínas Aviares/genética , Evolución Biológica , Embrión de Pollo , Coturnix , Regulación del Desarrollo de la Expresión Génica , Ratones , Desarrollo de Músculos/genética , Mutación , Cresta Neural/embriología , Factores de Transcripción Paired Box/genética , Somitos/embriología , Quimera por Trasplante/embriología , Quimera por Trasplante/genética
2.
Dev Biol ; 357(1): 108-16, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21741963

RESUMEN

The forelimbs of higher vertebrates are composed of two portions: the appendicular region (stylopod, zeugopod and autopod) and the less prominent proximal girdle elements (scapula and clavicle) that brace the limb to the main trunk axis. We show that the formation of the muscles of the proximal limb occurs through two distinct mechanisms. The more superficial girdle muscles (pectoral and latissimus dorsi) develop by the "In-Out" mechanism whereby migration of myogenic cells from the somites into the limb bud is followed by their extension from the proximal limb bud out onto the thorax. In contrast, the deeper girdle muscles (e.g. rhomboideus profundus and serratus anterior) are induced by the forelimb field which promotes myotomal extension directly from the somites. Tbx5 inactivation demonstrated its requirement for the development of all forelimb elements which include the skeletal elements, proximal and distal muscles as well as the sternum in mammals and the cleithrum of fish. Intriguingly, the formation of the diaphragm musculature is also dependent on the Tbx5 programme. These observations challenge our classical views of the boundary between limb and trunk tissues. We suggest that significant structures located in the body should be considered as components of the forelimb.


Asunto(s)
Tipificación del Cuerpo , Miembro Anterior/embriología , Músculo Esquelético/embriología , Animales , Embrión de Pollo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Miembro Anterior/citología , Ratones , Músculo Esquelético/anatomía & histología , Músculo Esquelético/citología , Somitos/citología , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
3.
J Anat ; 221(2): 115-20, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22606994

RESUMEN

Somites compartmentalize into a dorsal epithelial dermomyotome and a ventral mesenchymal sclerotome. While sclerotomes give rise to vertebrae and intervertebral discs, dermomyotomes contribute to skeletal muscle and epaxial dermis. Bone morphogenetic protein (BMP)-signals from the lateral mesoderm induce the lateral portion of the dermomyotome to form chondrogenic precursor cells, forming the cartilage of the scapula blade. The fact that BMPs are expressed in the roof plate of the neural tube where they induce cartilage formation led to the question why cells migrating from the medial part of the dermomyotome do not undergo chondrogenic differentiation and do not contribute to the dorsal part of the vertebrae. In the present study, we traced dermomyotomal derivatives by using the quail-chick marker technique. Our study reveals a temporal sequence in the formation of the vertebral cartilage and the midline dermis. The dorsal mesenchyme overlying the roof plate of the neural tube is formed prior to the de-epithelialization of the dermomyotome. Dermomyotomal cells start to migrate medially into the sub-ectodermal space to form the midline dermis after chondrogenesis of the dorsal mesenchyme has occurred. This time delay between chondrogenesis of the dorsal vertebra and dermal formation allows an undisturbed development of these two tissue components within a narrow region of the embryo.


Asunto(s)
Embrión de Pollo/crecimiento & desarrollo , Dermis/embriología , Columna Vertebral/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/embriología , Codorniz/embriología , Factores de Tiempo
4.
BMC Dev Biol ; 10: 32, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20334703

RESUMEN

BACKGROUND: Pattern formation of the limb skeleton is regulated by a complex interplay of signaling centers located in the ectodermal sheath and mesenchymal core of the limb anlagen, which results, in the forelimb, in the coordinate array of humerus, radius, ulna, carpals, metacarpals and digits. Much less understood is why skeletal elements form only in the central mesenchyme of the limb, whereas muscle anlagen develop in the peripheral mesenchyme ensheathing the chondrogenic center. Classical studies have suggested a role of the limb ectoderm as a negative regulator of limb chondrogenesis. RESULTS: In this paper, we investigated the molecular nature of the inhibitory influence of the ectoderm on limb chondrogenesis in the avian embryo in vivo. We show that ectoderm ablation in the early limb bud leads to increased and ectopic expression of early chondrogenic marker genes like Sox9 and Collagen II, indicating that the limb ectoderm inhibits limb chondrogenesis at an early stage of the chondrogenic cascade. To investigate the molecular nature of the inhibitory influence of the ectoderm, we ectopically expressed Wnt6, which is presently the only known Wnt expressed throughout the avian limb ectoderm, and found that Wnt6 overexpression leads to reduced expression of the early chondrogenic marker genes Sox9 and Collagen II. CONCLUSION: Our results suggest that the inhibitory influence of the ectoderm on limb chondrogenesis acts on an early stage of chondrogenesis upsteam of Sox9 and Collagen II. We identify Wnt6 as a candidate mediator of ectodermal chondrogenic inhibition in vivo. We propose a model of Wnt-mediated centripetal patterning of the limb by the surface ectoderm.


Asunto(s)
Embrión de Pollo , Condrogénesis , Extremidades/embriología , Proteínas Wnt/metabolismo , Animales , Colágeno Tipo II/metabolismo , Ectodermo/metabolismo , Factor de Transcripción SOX9/metabolismo
5.
BMC Dev Biol ; 10: 91, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20807426

RESUMEN

BACKGROUND: Cells of the epithelially organised dermomyotome are traditionally believed to give rise to skeletal muscle and dermis. We have previously shown that the dermomyotome can undergo epithelial-mesenchymal transition (EMT) and give rise to chondrogenic cells, which go on to form the scapula blade in birds. At present we have little understanding regarding the issue of when the chondrogenic fate of dermomyotomal cells is determined. Using quail-chick grafting experiments, we investigated whether scapula precursor cells are committed to a chondrogenic fate while in an epithelial state or whether commitment is established after EMT. RESULTS: We show that the hypaxial dermomyotome, which normally forms the scapula, does not generate cartilaginous tissue after it is grafted to the epaxial domain. In contrast engraftment of the epaxial dermomyotome to the hypaxial domain gives rise to scapula-like cartilage. However, the hypaxial sub-ectodermal mesenchyme (SEM), which originates from the hypaxial dermomyotome after EMT, generates cartilaginous elements in the epaxial domain, whereas in reciprocal grafting experiments, the epaxial SEM cannot form cartilage in the hypaxial domain. CONCLUSIONS: We suggest that the epithelial cells of the dermomyotome are not committed to the chondrogenic lineage. Commitment to this lineage occurs after it has undergone EMT to form the sub-ectodermal mesenchyme.


Asunto(s)
Condrocitos/citología , Epitelio/embriología , Mesodermo/embriología , Codorniz/embriología , Escápula/embriología , Animales , Cartílago/citología , Cartílago/embriología , Embrión de Pollo , Pollos , Condrocitos/metabolismo , Mesodermo/citología , Escápula/citología
6.
Histochem Cell Biol ; 132(4): 413-22, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19526365

RESUMEN

Pleiotrophin (Ptn) is a secreted, developmentally regulated growth factor associated with the extracellular matrix. During mammalian embryogenesis, Ptn has been suggested to play a role in the development of various embryonic structures including nervous system and skeleton. In the avian embryo, Ptn has been proposed to be involved in limb cartilage development, but embryonic Ptn expression has not been comprehensively studied. We isolated a cDNA fragment containing the full-length coding sequence of chick Ptn and studied the expression of Ptn in detail until embryonic day 10. We, furthermore, isolated a 6,385-bp phage clone containing the Ptn cDNA of 2,551 bp and additional 3,787 bp downstream of the published Ptn cDNA sequence classifying a yet Ptn-unrelated chEST clone as the 3' untranslated region of Ptn. Our studies revealed novel expression domains in developing somites and during limb formation. We found prominent expression in the somitocoel cells of epithelial somites, and in a sclerotomal subcompartment, the syndetome, which gives rise to the axial tendons in the vertebral motion segment. In the limbs, Ptn was markedly expressed in tendon anlagen and in phalangeal joints. Our results introduce Ptn as a novel marker gene in avian somite and tendon development.


Asunto(s)
Proteínas Portadoras/biosíntesis , Citocinas/biosíntesis , Somitos/metabolismo , Tendones/embriología , Tendones/metabolismo , Animales , Proteínas Portadoras/genética , Embrión de Pollo , Citocinas/genética , Somitos/citología , Tendones/citología
7.
Adv Exp Med Biol ; 638: 1-41, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-21038768

RESUMEN

During somite maturation, the ventral half of the epithelial somite disintegrates into the mesenchymal sclerotome, whereas the dorsal half forms a transitory epithelial sheet, the dermomyotome, lying in between the sclerotome and the surface ectoderm. The dermomyotome is the source of the majority of the mesodermal tissues in the body, giving rise to cell types as different as muscle, connective tissue, endothelium and cartilage. Thus, the dermomyotome is the most important turntable of mesodermal cell fate choice in the vertebrate embryo. Sclerotome development is characterized by a cranio-caudal polarization, resegmentation and axial identity. Its formation is controlled by signals from the notochord, the neural tube, the lateral plate mesoderm and the myotome. These signals and cross-talk between somite cells lead to the separation of various subdomains, like the central, ventral, dorsal and lateral sclerotome. Here, we discuss the current knowledge on the formation of the dermomyotome and the mechanisms leading to the development of the various dermomyotomal derivatives, with special emphasis on the development of musculature and dermis. We further discuss the molecular control of sclerotomal subdomain formation and cell type specification.


Asunto(s)
Embrión de Pollo/embriología , Somitos/embriología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Embrión de Pollo/metabolismo , Dermis/embriología , Transición Epitelial-Mesenquimal , Desarrollo de Músculos , Codorniz/embriología , Codorniz/metabolismo , Transducción de Señal , Somitos/metabolismo
8.
Ann Anat ; 190(3): 208-22, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18417332

RESUMEN

During vertebrate embryogenesis, specialized mesodermal structures, called somites, give rise to a variety of mesodermal tissues including skeletal muscles, vertebrae and dermis. Development of the somites is a rhythmic process that involves a series of steps including segmentation of the paraxial mesoderm, epithelialization, somite formation, somite maturation, somite patterning and differentiation of somitic cells into different lineages. Wnt signaling has been found to play crucial roles in multiple steps of somite development. In this review, we present a brief overview of current knowledge on Wnt signaling events during the development of somites and their derivatives.


Asunto(s)
Desarrollo Embrionario/fisiología , Transducción de Señal , Proteínas Wnt/fisiología , Animales , Tipificación del Cuerpo , Humanos , Mesodermo/fisiología , Microscopía Electrónica de Rastreo , Proteínas Wnt/ultraestructura
9.
Anat Embryol (Berl) ; 211 Suppl 1: 65-71, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17006658

RESUMEN

The scapula is a component of the shoulder girdle. Its structure has changed greatly during evolution. For example, in humans it is a large quite flat triangular bone whereas in chicks it is a long blade like structure. In this review we describe the mechanisms that control the formation of the scapula. To assimilate our understanding regarding the development of the scapula blade we start by addressing the issue concerning the origin of the scapula. Experiments using somite extirpation, chick-quail cell marking system and genetic cell labelling techniques in a variety of species have suggested that the scapula had its origin in the somites. For example we have shown in the chick that the scapula blade originates from the somite, while the cranial part, which articulates with the upper limb, is derived from the somatopleure of the forelimb field. In the second and third part of the review we discuss the compartmental origin of this bone and the signalling molecules that control the scapula development. It is very interesting that the scapula blade originates from the dorsal compartment, dermomyotome, which has been previously been associated as a source of muscle and dermis, but not of cartilage. Thus, the development of the scapula blade can be considered a case of dermomyotomal chondrogenesis. Our results show that the dermomyotomal chondrogenesis differ from the sclerotomal chondrogenesis. Firstly, the scapula precursors are located in the hypaxial domain of the dermomyotome, from which the hypaxial muscles are derived. The fate of the scapula precursors, like the hypaxial muscle, is controlled by ectoderm-derived signals and BMPs from the lateral plate mesoderm. Ectoderm ablation and inhibition of BMP activity interfers the scapula-specific Pax1 expression and scapula blade formation. However, only somite cells in the cervicothoracic transition region appear to be committed to form scapula. This indicates that the intrinsic segment specific information determines the scapula forming competence of the somite cells. Taken together, we conclude that the scapula forming cells located within the hypaxial somitic domain require BMP signals derived from the somatopleure and as yet unidentified signals from ectoderm for activation of their coded intrinsic segment specific chondrogenic programme. In the last part we discuss the new data that provides evidence that neural crest contributes for the development of the scapula.


Asunto(s)
Diferenciación Celular/fisiología , Morfogénesis/fisiología , Escápula/embriología , Transducción de Señal/fisiología , Somitos/fisiología , Vertebrados/embriología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Factores de Transcripción Paired Box/metabolismo
10.
Anat Embryol (Berl) ; 211(5): 519-23, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16718479

RESUMEN

The glycoprotein hormone stanniocalcin (STC) has originally been described in the teleost kidney. Since then, STC homologs have been identified in various genomes including human, mouse, rat, Xenopus and zebrafish. In mammals, two STC genes, STC1 and STC2, are known. We cloned a chicken STC homolog to analyze its expression pattern during chick development. Sequence analyses revealed a high sequence similarity of the chicken STC (cSTC) clone to mammalian STC2. Interestingly the expression pattern of cSTC2 largely resembles those of murine STC1: we found expression of cSTC2 in the nephric tubules, in the myocardium, in skeletal muscle cells from the onset of differentiation, and in synovial joint anlagen of the limbs.


Asunto(s)
Pollos/genética , Regulación del Desarrollo de la Expresión Génica , Glicoproteínas/genética , Articulaciones/fisiología , Músculo Esquelético/fisiología , Secuencia de Aminoácidos , Animales , Desarrollo Óseo , Huesos/fisiología , Embrión de Pollo , Clonación Molecular , ADN Complementario , Glicoproteínas/metabolismo , Corazón/embriología , Corazón/fisiología , Articulaciones/embriología , Datos de Secuencia Molecular , Músculo Esquelético/embriología
11.
Anat Embryol (Berl) ; 211(3): 183-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16369823

RESUMEN

Cells from the ventrolateral lip of the dermomyotome at limb levels undergo epithelio-mesenchymal transition and migrate as individual and undifferentiated cells into the limb buds. The precursor cells are under the influence of various signaling factors in the limb. Dorsal and ventral ectoderm influences various aspects of limb development. In addition to our previous studies, we investigated the influence of ectoderm and Wnt-6 on somitic cells in the limb bud. We show that in the absence of ectoderm the precursor cells never form muscle cells but differentiate into endothelial cells. In addition, we show that Wnt-6 that is secreted from the ectoderm influences the precursor cells to form muscle even in the absence of ectoderm. This indicates that Wnt-6 is an ectodermal signal that induces somite-derived progenitor cells to form muscle cells during limb development.


Asunto(s)
Proteínas Aviares/fisiología , Extremidades/embriología , Desarrollo de Músculos/fisiología , Proteínas Proto-Oncogénicas/fisiología , Alas de Animales/embriología , Proteínas Wnt/fisiología , Animales , Células CHO , Embrión de Pollo , Coturnix/embriología , Cricetinae , Cricetulus , Transducción de Señal/fisiología , Somitos/trasplante
12.
Mech Dev ; 110(1-2): 51-60, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11744368

RESUMEN

Bone morphogenetic protein (BMP) signaling is known to be involved in multiple inductive events during embryogenesis including the development of amniote skin. Here, we demonstrate that early application of BMP-2 to the lateral trunk of chick embryos induces the formation of dense dermis, which is competent to participate in feather development. We show that BMPs induce the dermis markers Msx-1 and cDermo-1 and lead to dermal proliferation, to expression of beta-catenin, and eventually to the formation of ectopic feather tracts in originally featherless regions of chick skin. Moreover, we present a detailed analysis of cDermo-1 expression during early feather development. The data implicate that cDermo-1 is located downstream of BMP in a signaling pathway that leads to condensation of dermal cells. The roles of BMP and cDermo-1 during development of dermis and feather primordia are discussed.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Plumas/embriología , Piel/embriología , Transactivadores , Factor de Crecimiento Transformador beta , Animales , Biomarcadores , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Portadoras , Embrión de Pollo , Proteínas del Citoesqueleto/genética , ADN Complementario/genética , Plumas/anomalías , Plumas/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Hiperplasia , Hibridación in Situ , Factor de Transcripción MSX1 , Datos de Secuencia Molecular , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas/farmacología , Transducción de Señal , Piel/efectos de los fármacos , Factores de Transcripción/genética , beta Catenina
13.
FASEB J ; 16(10): 1271-3, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12060670

RESUMEN

Detection of lymphatic endothelal cells (LECs) has been problematic because of the lack of specific markers. The homeobox transcription factor Prox1 is expressed in LECs of murine and avian embryos. We have studied expression of Prox1 in human tissues with immunofluorescence. In 19-wk-old human fetuses, Prox1 and vascular endothelial growth factor receptor-3 (VEGFR-3) are coexpressed in LECs of lymphatic trunks and lymphatic capillaries. Prox1 is located in the nucleus, and its expression is mutually exclusive with that of the blood vascular marker PAL-E. Prox1 is a constitutive marker of LECs and is found in tissues of healthy adults and lymphedema patients. Blood vascular endothelial cells (BECs) of hemangiomas express CD31 and CD34, but not Prox1. A subset of these cells is positive for VEGFR-3. Lymphatics in the periphery of hemangiomas express Prox1 and CD31, but not CD34. In lymphangiomas, LECs express Prox1, CD31, and VEGFR-3, but rarely CD34. In the stroma, spindle-shaped CD34-positive cells are present. We show that Prox1 is a reliable marker for LECs in normal and pathologic human tissues, coexpressed with VEGFR-3 and CD31. VEGFR-3 and CD34 are less reliable markers for LECs and BECs, respectively, because exceptions from their normal expression patterns are found in pathologic tissues.


Asunto(s)
Endotelio Linfático/química , Proteínas de Homeodominio/análisis , Enfermedades Linfáticas/metabolismo , Factores de Transcripción/análisis , Antígenos CD34/análisis , Biomarcadores/análisis , Biomarcadores de Tumor/análisis , Preescolar , Endotelio Linfático/metabolismo , Hemangioma/química , Proteínas de Homeodominio/metabolismo , Humanos , Lactante , Recién Nacido , Linfangioma/química , Linfedema/metabolismo , Especificidad de Órganos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factores de Crecimiento/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor , Receptor 3 de Factores de Crecimiento Endotelial Vascular
14.
Anat Embryol (Berl) ; 210(3): 187-97, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16170541

RESUMEN

Although limb development has been a subject of intense research over the last decades, development of the girdles has been poorly investigated. Particularly, a detailed analysis of pelvic girdle development including functional data is not available to date. Here, we describe the early steps of the formation of mesenchymal and cartilaginous anlagen of the pelvic elements using alcian blue staining in whole mount embryos and serial histological sections, and the expression pattern of several marker genes to provide an operative basis for further research in pelvis development. Moreover, we describe pelvis development after unilateral hindlimb bud amputation and somatopleural ectoderm extirpation. We show for the first time, that ectodermal signals at pre-limb bud stages are required for pelvis formation. We present evidence suggesting that the regulation of ilium development is different from the development of ischium and pubis.


Asunto(s)
Embrión de Pollo/embriología , Ectodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Huesos Pélvicos/embriología , Animales , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Miembro Posterior/embriología , Miembro Posterior/metabolismo , Miembro Posterior/cirugía , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Morfogénesis , Proteína MioD/genética , Proteína MioD/metabolismo , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Huesos Pélvicos/anomalías , Huesos Pélvicos/metabolismo , Factor de Transcripción SOX9 , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Anat Embryol (Berl) ; 209(5): 401-7, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16007475

RESUMEN

In this study we investigated the effect of recombinant activin A on the differentiation of limb muscle precursors of chick embryos. We show that treatment with activin resulted in a downregulation of Pax-3 and MyoD expression within 6 h after treatment, whereas expression of Myf-5 and Pax-7 was largely unaffected. The effect on gene expression was transient because 1 day after activin exposure the development of the premuscle masses had proceeded, and Pax-3 and MyoD expression was reexpressed at normal levels. Unlike other transforming growth factors-beta, activin did not induce programmed cell death in limb mesenchyme, thus myogenic cells were not permanently lost. In high-density cultures of embryonic chick limb mesenchyme (micromass cultures), activin repressed the generation of Pax-7-expressing muscle precursors. Furthermore, in the presence of activin, fewer muscle precursors differentiated, and the population of differentiating cells failed to fuse and form myotubes. Our data suggest that activin reversibly inhibited expression of two transcription factors, Pax-3 and MyoD, and thus transiently inhibited proliferation and differentiation of limb muscle precursors. However, myogenic cells were not lost as they continued to express Pax-7 and Myf-5, and this may have allowed precursors to commence development after the activin effect faded. We suggest that activin acts in conjunction with a closely related signalling molecule, myostatin, to prevent excessive growth of skeletal muscle.


Asunto(s)
Activinas/metabolismo , Diferenciación Celular/fisiología , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Inhibidores de Crecimiento/metabolismo , Subunidades beta de Inhibinas/metabolismo , Músculo Esquelético/embriología , Mioblastos Esqueléticos/metabolismo , Activinas/farmacología , Animales , Apoptosis/fisiología , Diferenciación Celular/efectos de los fármacos , Embrión de Pollo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/fisiología , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Inhibidores de Crecimiento/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Subunidades beta de Inhibinas/farmacología , Mesodermo/citología , Mesodermo/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Mioblastos Esqueléticos/efectos de los fármacos , Factor 5 Regulador Miogénico , Miostatina , Factor de Transcripción PAX3 , Factor de Transcripción PAX7 , Factores de Transcripción Paired Box , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Int J Dev Biol ; 46(7): 905-14, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12455628

RESUMEN

Skeletal muscle precursors for the limbs originate from the epithelial layer of the somites, the dermomyotomes. We summarize the steps of limb muscle development from the specification of precursor cells in the dermomyotome, the directed migration of these cells to and within the limb buds to muscle growth and differentiation. All steps are controlled by local signaling between embryonic structures. In dermomyotome development, signals from the neural tube, the ectoderm and the intermediate and lateral mesoderm result in a medio-lateral patterning. Only the lateral portions of the dermomyotomes give rise to muscle precursor cells destined to enter the limb buds. As a prerequisite for migration, precursor cells have to de-epithelialize as a result of interactions between SF/HGF and its receptor c-met. Precursor cells adopt a mesenchymal morphology without losing their myogenic specification. This is achieved by the expression of the transcription factors Pax3, Pax7 and myf5. During migration, premature differentiation has to be kept at bay to enable motility and proliferation. After having reached their target sites, the dorsal and ventral myogenic zones, myogenesis is initiated by the activation of the muscle determination factors MyoD, myogenin and MRF4. Finally, we briefly summarize the process of muscle hypertrophy and regeneration during which aspects of developmental processes are reinitiated.


Asunto(s)
Extremidades/embriología , Desarrollo de Músculos/fisiología , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Embrión de Pollo , Genes Reguladores/fisiología , Mioblastos/fisiología , Regeneración/fisiología
17.
J Comp Neurol ; 442(1): 78-88, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11754368

RESUMEN

The origin of vascular pericytes (PCs) and smooth muscle cells (vSMCs) in the brain has hitherto remained an open question. In the present study, we used the quail-chick chimerization technique to elucidate the lineage of cranial PCs/vSMCs. We transplanted complete halves of brain anlagen, or dorsal (presumptive neural crest [NC]) or ventral cranial neural tube. Additional experiments included transplantations of neuroectoderm into limb mesenchyme, and of head mesoderm or limb mesenchyme into paraxial head mesoderm. After interspecific transplantation of quail brain rudiment, graft-derived vSMCs were found in the vessel walls of the grafted brain. Notably, transplanted ventral neural tube also gave rise to vSMCs. After grafting of quail head mesoderm, quail endothelial cells were found in the host brain, but no vSMCs of donor origin. Grafting of quail whole or ventral neural tube into the limb bud led to endowment of graft and host vessels with graft-derived vSMCs. Quail limb bud mesenchyme contributed to vSMCs in the ectopic neural graft, but, when transplanted into paraxial head mesenchyme, it did not form intraneural vSMCs. After orthotopic transplantation of cranial NC, graft-derived vSMCs were not only found in meninges and brain of the operated side, but also on the contralateral side. Our results show that 1) avian cranial neuroectoderm is able to differentiate into vSMCs of the brain; 2) this potential is not restricted to the prospective NC; and 3) neither cranial mesoderm nor cranially transplanted limb bud mesoderm can give rise to brain vSMC.


Asunto(s)
Vasos Sanguíneos/embriología , Encéfalo/embriología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Ectodermo/ultraestructura , Músculo Liso Vascular/ultraestructura , Pericitos/ultraestructura , Quimera por Trasplante/embriología , Actinas/metabolismo , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/ultraestructura , Tipificación del Cuerpo/fisiología , Encéfalo/irrigación sanguínea , Trasplante de Tejido Encefálico/métodos , Embrión de Pollo , Coturnix , Ectodermo/metabolismo , Ectodermo/trasplante , Técnica del Anticuerpo Fluorescente , Supervivencia de Injerto/fisiología , Cabeza/irrigación sanguínea , Cabeza/embriología , Esbozos de los Miembros/irrigación sanguínea , Esbozos de los Miembros/embriología , Esbozos de los Miembros/trasplante , Mesodermo/metabolismo , Mesodermo/trasplante , Mesodermo/ultraestructura , Microscopía Confocal , Microscopía Electrónica , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/trasplante , Cresta Neural/embriología , Cresta Neural/trasplante , Cresta Neural/ultraestructura , Pericitos/metabolismo , Pericitos/trasplante , Trasplante de Células Madre , Células Madre/metabolismo , Células Madre/ultraestructura , Sulfotransferasas/metabolismo , Trasplante Heterotópico/métodos
18.
Cancer Treat Res ; 117: 33-50, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15015551

RESUMEN

This chapter focuses on the morphology of blood vessel formation in and around the early central nervous system (CNS, i.e., brain and spinal cord) of avian embryos. We discuss cell lineages, proliferation and interactions of endothelial cells, pericytes and smooth muscle cells, and macrophages. Due to space limitations, we can not review the molecular control of CNS angiogenesis, but refer the reader to other chapters in this book and to recent publications on the assembly of the vasculature (1,2).


Asunto(s)
Sistema Nervioso Central/patología , Animales , Encéfalo/irrigación sanguínea , División Celular , Linaje de la Célula , Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/irrigación sanguínea , Neoplasias del Sistema Nervioso Central/patología , Endotelio Vascular/metabolismo , Humanos , Invasividad Neoplásica , Neovascularización Patológica , Unión Proteica , Médula Espinal/irrigación sanguínea , Células Madre/metabolismo
19.
Anat Embryol (Berl) ; 208(6): 411-24, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15338303

RESUMEN

During somite maturation, the ventral half of the epithelial somite disintegrates into the mesenchymal sclerotome, whereas the dorsal half forms a transitory epithelial sheet, the dermomyotome, lying in between the sclerotome and the surface ectoderm. The dermomyotome is the source of most of the mesodermal tissues in the body, giving rise to cell types as different as muscle, connective tissue, endothelium, and cartilage. Thus, the dermomyotome is the most important turntable of mesodermal cell fate choice in the vertebrate embryo. Here, we discuss the current knowledge on the formation of the dermomyotome and the mechanisms leading to the development of the various dermomyotomal derivatives, with special emphasis on the development of musculature and dermis.


Asunto(s)
Embrión de Pollo/citología , Dermis/embriología , Músculo Esquelético/embriología , Somitos/citología , Animales , Diferenciación Celular , Dermis/citología , Músculo Esquelético/citología
20.
Anat Embryol (Berl) ; 206(4): 283-9, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12649726

RESUMEN

Somites contribute myogenic and endothelial precursor cells to the limb bud. Transplantations of single somites have shown the pattern of muscle cell distribution from individual somites to individual limb muscles. However, the pattern of the endothelial cell distribution from individual somites to the limb has not been characterized. We have mapped quail muscle and endothelial cell distribution in the distal part of the chick limb after single somite transplantation to determine if there is a spatial relationship between muscle and endothelial cells originating from the same somite. Single brachial somites from quail donor embryos were transplanted into chick embryos, and, following incubation, serial sections were stained with a quail-endothelial cell-specific monoclonal antibody (QH-1), an anti-quail antibody (QCPN) and an anti-desmin antibody to distinguish the quail endothelial and muscle cells from chick cells. Our results show that transplants of somite 16-21 each gave rise to quail endothelial cells in the wing. The anterioposterior position of the blood vessels formed by somitic endothelial cells corresponded to the craniocaudal position of the somite from which they have originated. Endothelial cells were located not only in the peri- and endomysium but also in the subcutaneous, intermuscular, perineural and periost tissues. There was no strict correlation between the distribution of muscle and endothelial cell from a single transplanted somite. Blood vessels formed by grafted quail endothelial cells could invade the muscle that did not contain any quail muscle cells, and conversely a muscle composed of numerous quail muscle cells was lacking any endothelial cells of quail origin. Furthermore, a chimeric limb with very little quail muscle cells was found to contain numerous quail endothelial cells and vice versa. These results suggest that muscle and endothelial cells derived from the same somite migrate on different routes in the developing limb bud.


Asunto(s)
Coturnix , Embrión no Mamífero/embriología , Endotelio/fisiología , Músculo Esquelético/embriología , Somitos/fisiología , Alas de Animales/embriología , Animales , Anticuerpos Monoclonales , Movimiento Celular , Embrión de Pollo , Quimera , Desmina/inmunología , Desmina/metabolismo , Embrión no Mamífero/metabolismo , Endotelio/citología , Inmunohistoquímica , Esbozos de los Miembros , Morfogénesis , Músculo Esquelético/metabolismo , Somitos/citología , Somitos/trasplante , Alas de Animales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA