Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 326(3): H845-H856, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305753

RESUMEN

Myocardial infarction (MI) and osteoporotic fracture (Fx) are two of the leading causes of mortality and morbidity worldwide. Although these traumatic injuries are treated as if they are independent, there is epidemiological evidence linking the incidence of Fx and MI, thus raising the question of whether each of these events can actively influence the risk of the other. Atherosclerotic cardiovascular disease and osteoporosis, the chronic conditions leading to MI and Fx, are known to have shared pathoetiology. Furthermore, sustained systemic inflammation after traumas such as MI and Fx has been shown to exacerbate both underlying chronic conditions. However, the effects of MI and Fx outside their own system have not been well studied. The sympathetic nervous system (SNS) and the complement system initiate a systemic response after MI that could lead to subsequent changes in bone remodeling through osteoclasts. Similarly, SNS and complement system activation following fracture could lead to heart tissue damage and exacerbate atherosclerosis. To determine whether damaging bone-heart cross talk may be important comorbidity following Fx or MI, this review details the current understanding of bone loss after MI, cardiovascular damage after Fx, and possible shared underlying mechanisms of these processes.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Fracturas Osteoporóticas , Humanos , Fracturas Osteoporóticas/epidemiología , Corazón , Enfermedad Crónica
2.
Artículo en Inglés | MEDLINE | ID: mdl-38697509

RESUMEN

OBJECTIVE: People who sustain joint injuries such as anterior cruciate ligament (ACL) rupture often develop post-traumatic osteoarthritis (PTOA). In human patients, ACL injuries are often treated with ACL reconstruction. However, it is still unclear how effective joint restabilization is for reducing the progression of PTOA. The goal of this study was to determine how surgical restabilization of a mouse knee joint following non-invasive ACL injury affects PTOA progression. DESIGN: In this study, 187 mice were subjected to non-invasive ACL injury or no injury. After injury, mice underwent restabilization surgery, sham surgery, or no surgery. Mice were then euthanized on day 14 or day 49 after injury/surgery. Functional analyses were performed at multiple time points to assess voluntary movement, gait, and pain. Knees were analyzed ex vivo with micro-computed tomography, RT-PCR, and whole-joint histology to assess articular cartilage degeneration, synovitis, and osteophyte formation. RESULTS: Both ACL injury and surgery resulted in loss of epiphyseal trabecular bone (-27-32%) and reduced voluntary movement at early time points. Joint restabilization successfully lowered OA score (-78% relative to injured at day 14, p < 0.0001), and synovitis scores (-37% relative to injured at day 14, p = 0.042), and diminished the formation of chondrophytes/osteophytes (-97% relative to injured at day 14, p < 0.001, -78% at day 49, p < 0.001). CONCLUSIONS: This study confirmed that surgical knee restabilization was effective at reducing articular cartilage degeneration and diminishing chondrophyte/osteophyte formation after ACL injury in mice, suggesting that these processes are largely driven by joint instability in this mouse model. However, restabilization was not able to mitigate the early inflammatory response and the loss of epiphyseal trabecular bone, indicating that these processes are independent of joint instability.

3.
J Biomech Eng ; 145(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37417814

RESUMEN

Noninvasive compression-induced anterior cruciate ligament rupture (ACL-R) is an easy and reproducible model for studying post-traumatic osteoarthritis (PTOA) in mice. However, equipment typically used for ACL-R is expensive, immobile, and not available to all researchers. In this study, we compared PTOA progression in mice injured with a low-cost custom ACL-rupture device (CARD) to mice injured with a standard system (ElectroForce 3200). We quantified anterior-posterior (AP) joint laxity immediately following injury, epiphyseal trabecular bone microstructure, and osteophyte volume at 2 and 6 weeks post injury using micro-computed tomography, and osteoarthritis progression and synovitis at 2 and 6 weeks post injury using whole-joint histology. We observed no significant differences in outcomes in mice injured with the CARD system compared to mice injured with the Electroforce (ELF) system. However, AP joint laxity data and week 2 micro-CT and histology outcomes suggested that injuries may have been slightly more severe and PTOA progressed slightly faster in mice injured with the CARD system compared to the ELF system. Altogether, these data confirm that ACL-R can be successfully and reproducibly performed with the CARD system and that osteoarthritis (OA) progression is mostly comparable to that of mice injured with the ELF system, though potentially slightly faster. The CARD system is low cost and portable, and we are making the plans and instructions freely available to all interested investigators in the hopes that they will find this system useful for their studies of OA in mice.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Osteoartritis , Ratones , Animales , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Microtomografía por Rayos X , Osteoartritis/diagnóstico por imagen
4.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899361

RESUMEN

Osteoarthritis (OA) is a painful and debilitating disease characterized by the chronic and progressive degradation of articular cartilage. Post-traumatic OA (PTOA) is a secondary form of OA that develops in ~50% of cases of severe articular injury. Inflammation and re-occurring injury have been implicated as contributing to the progression of PTOA after the initial injury. However, there is very little known about external factors prior to injury that could affect the risk of PTOA development. To examine how the gut microbiome affects PTOA development we used a chronic antibiotic treatment regimen starting at weaning for six weeks prior to ACL rupture, in mice. A six-weeks post-injury histological examination showed more robust cartilage staining on the antibiotic (AB)-treated mice than the untreated controls (VEH), suggesting slower disease progression in AB cohorts. Injured joints also showed an increase in the presence of anti-inflammatory M2 macrophages in the AB group. Molecularly, the phenotype correlated with a significantly lower expression of inflammatory genes Tlr5, Ccl8, Cxcl13, and Foxo6 in the injured joints of AB-treated animals. Our results indicate that a reduced state of inflammation at the time of injury and a lower expression of Wnt signaling modulatory protein, Rspo1, caused by AB treatment can slow down or improve PTOA outcomes.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/complicaciones , Antibacterianos/farmacología , Cartílago Articular/lesiones , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Osteoartritis/prevención & control , Animales , Lesiones del Ligamento Cruzado Anterior/patología , Progresión de la Enfermedad , Inflamación/etiología , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/patología , Fenotipo , RNA-Seq , Transcriptoma
5.
Int J Mol Sci ; 21(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935848

RESUMEN

Aging and injury are two major risk factors for osteoarthritis (OA). Yet, very little is known about how aging and injury interact and contribute to OA pathogenesis. In the present study, we examined age- and injury-related molecular changes in mouse knee joints that could contribute to OA. Using RNA-seq, first we profiled the knee joint transcriptome of 10-week-old, 62-week-old, and 95-week-old mice and found that the expression of several inflammatory-response related genes increased as a result of aging, whereas the expression of several genes involved in cartilage metabolism decreased with age. To determine how aging impacts post-traumatic arthritis (PTOA) development, the right knee joints of 10-week-old and 62-week-old mice were injured using a non-invasive tibial compression injury model and injury-induced structural and molecular changes were assessed. At six-week post-injury, 62-week-old mice displayed significantly more cartilage degeneration and osteophyte formation compared with young mice. Although both age groups elicited similar transcriptional responses to injury, 62-week-old mice had higher activation of inflammatory cytokines than 10-week-old mice, whereas cartilage/bone metabolism genes had higher expression in 10-week-old mice, suggesting that the differential expression of these genes might contribute to the differences in PTOA severity observed between these age groups.


Asunto(s)
Envejecimiento/genética , Traumatismos de la Rodilla/complicaciones , Osteoartritis de la Rodilla/genética , Transcriptoma , Envejecimiento/metabolismo , Animales , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Células Cultivadas , Articulación de la Rodilla/crecimiento & desarrollo , Articulación de la Rodilla/metabolismo , Ratones , Ratones Endogámicos C57BL , Osteoartritis de la Rodilla/etiología , Osteoartritis de la Rodilla/metabolismo , RNA-Seq , Análisis de la Célula Individual
6.
BMC Musculoskelet Disord ; 19(1): 223, 2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021585

RESUMEN

BACKGROUND: Bone structure and strength are rapidly lost during conditions of decreased mechanical loading, and aged bones have a diminished ability to adapt to increased mechanical loading. This is a concern for older patients that experience periods of limited mobility or bed rest, but the acute effects of disuse on the bones of aged patients have not been thoroughly described. Previous animal studies have primarily examined the effect of mechanical unloading on young animals. Those that have studied aged animals have exclusively focused on bone loss during unloading and not bone recovery during subsequent reloading. In this study, we investigated the effect of decreased mechanical loading and subsequent reloading on bone using a hindlimb unloading model in Adult (9 month old) and Aged (28 month old) male rats. METHODS: Animals from both age groups were subjected to 14 days of hindlimb unloading followed by up to 7 days of reloading. Additional Aged rats were subjected to 7 days of forced treadmill exercise during reloading or a total of 28 days of reloading. Trabecular and cortical bone structure of the femur were quantified using ex vivo micro-computed tomography (µCT), and mechanical properties were quantified with mechanical testing. RESULTS: We found that Adult rats had substantially decreased trabecular bone volume fraction (BV/TV) following unloading (- 27%) while Aged animals did not exhibit significant bone loss following unloading. However, Aged animals had lower trabecular BV/TV after 3 days of reloading (- 20% compared to baseline), while trabecular BV/TV of Adult rats was not different from baseline values after 3 days of reloading. Trabecular BV/TV of Aged animals remained lower than control animals even with exercise during 7 days of reloading and after 28 days of reloading. CONCLUSIONS: These data suggest that aged bone is less responsive to both increased and decreased mechanical loading, and that acute periods of disuse may leave older subjects with a long-term deficit in trabecular bone mass. These finding indicate the need for therapeutic strategies to improve the skeletal health of elderly patients during periods of disuse.


Asunto(s)
Envejecimiento/fisiología , Densidad Ósea/fisiología , Resorción Ósea/diagnóstico por imagen , Suspensión Trasera/fisiología , Soporte de Peso/fisiología , Envejecimiento/patología , Animales , Suspensión Trasera/efectos adversos , Masculino , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Microtomografía por Rayos X/métodos
7.
Clin Rev Bone Miner Metab ; 16(4): 116-130, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31363348

RESUMEN

A history of prior fracture is the most reliable indicator of prospective fracture risk. Increased fracture risk is not confined to the region of the prior fracture, but is operant at all skeletal sites, providing strong evidence of systemic bone loss after fracture. Animal and human studies suggest that systemic bone loss begins shortly after fracture and persists for several years in humans. In fact, bone quantity and bone quality may never fully return to their pre-fracture levels, especially in older subjects, demonstrating a need for improved understanding of the mechanisms leading to systemic bone loss after fracture in order to reduce subsequent fracture risk. Although the process remains incompletely understood, mechanical unloading (disuse), systemic inflammation, and hormones that control calcium homeostasis may all contribute to systemic bone loss. Additionally, individual factors can potentially affect the magnitude and time course of systemic bone loss and recovery. The magnitude of systemic bone loss correlates positively with injury severity and age. Men may also experience greater bone loss or less recovery than women after fracture. This review details the current understanding of systemic bone loss following fracture, including possible underlying mechanisms and individual factors that may affect this injury response.

8.
Int J Mol Sci ; 19(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205482

RESUMEN

Anterior cruciate ligament (ACL) injuries often result in post-traumatic osteoarthritis (PTOA). To better understand the molecular mechanisms behind PTOA development following ACL injury, we profiled ACL injury-induced transcriptional changes in knee joints of three mouse strains with varying susceptibility to OA: STR/ort (highly susceptible), C57BL/6J (moderately susceptible) and super-healer MRL/MpJ (not susceptible). Right knee joints of the mice were injured using a non-invasive tibial compression injury model and global gene expression was quantified before and at 1-day, 1-week, and 2-weeks post-injury using RNA-seq. Following injury, injured and uninjured joints of STR/ort and injured C57BL/6J joints displayed significant cartilage degeneration while MRL/MpJ had little cartilage damage. Gene expression analysis suggested that prolonged inflammation and elevated catabolic activity in STR/ort injured joints, compared to the other two strains may be responsible for the severe PTOA phenotype observed in this strain. MRL/MpJ had the lowest expression values for several inflammatory cytokines and catabolic enzymes activated in response to ACL injury. Furthermore, we identified several genes highly expressed in MRL/MpJ compared to the other two strains including B4galnt2 and Tpsab1 which may contribute to enhanced healing in the MRL/MpJ. Overall, this study has increased our knowledge of early molecular changes associated with PTOA development.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior/complicaciones , Osteoartritis/etiología , Osteoartritis/genética , Transcriptoma , Animales , Cartílago Articular/patología , Citocinas/genética , Progresión de la Enfermedad , Metaloproteasas/genética , Ratones Endogámicos C57BL , Osteoartritis/patología , Regulación hacia Arriba
9.
J Autoimmun ; 73: 73-84, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27330028

RESUMEN

Recently, autophagy-related proteins were shown to regulate osteoclast mediated bone resorption, a critical process in autoimmune diseases such as rheumatoid arthritis. However, the role of autophagy-linked FYVE containing protein, WDFY3, in osteoclast biology remains elusive. WDFY3 is a master regulator in selective autophagy for clearing ubiquitinated protein aggregates and has been linked with rheumatoid arthritis. Herein, we used a series of WDFY3 transgenic mice (Wdfy3(lacZ) and Wdfy3(loxP)) to investigate the function of WDFY3 in osteoclast development and function. Our data demonstrate that WDFY3 is highly expressed at the growth plate of neonatal mice and is expressed in osteoclasts in vitro cultures. Osteoclasts derived from WDFY3 conditional knockout mice (Wdfy3(loxP/loxP)-LysM-Cre(+)) demonstrated increased osteoclast differentiation as evidenced by higher number and enlarged size of TRAP(+) multinucleated cells. Western blot analysis also revealed up-regulation of TRAF6 and an increase in RANKL-induced NF-κB signaling in WDFY3-deficient bone marrow-derived macrophages compared to wild type cultures. Consistent with these observations WDFY3-deficient cells also demonstrated an increase in osteoclast-related genes Ctsk, Acp5, Mmp9 and an increase of dentine resorption in in vitro assays. Importantly, in vivo RANKL gene transfer exacerbated bone loss in WDFY3 conditional knockout mice, as evidenced by elevated serum TRAP, CTX-I and micro-CT analysis of distal femurs compared to wild type littermates. Taken together, our data highlight a novel role for WDFY3 in osteoclast development and function, which can be exploited for the treatment of musculoskeletal diseases.


Asunto(s)
Autofagia/fisiología , Osteogénesis/fisiología , Ligando RANK/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Relacionadas con la Autofagia , Western Blotting , Resorción Ósea/metabolismo , Catepsina K/metabolismo , Diferenciación Celular , Células Cultivadas , Fémur/diagnóstico por imagen , Técnicas de Transferencia de Gen , Células Gigantes/metabolismo , Macrófagos/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Osteoblastos , Osteoclastos/fisiología , Cultivo Primario de Células , Ligando RANK/genética , Transducción de Señal , Fosfatasa Ácida Tartratorresistente/sangre , Fosfatasa Ácida Tartratorresistente/metabolismo , Regulación hacia Arriba , Proteínas de Transporte Vesicular/genética , Microtomografía por Rayos X
10.
Calcif Tissue Int ; 97(3): 213-28, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25939648

RESUMEN

Deformations of vertebrae and sudden fractures of long bones caused by essentially normal loading are a characteristic problem in osteoporosis. If the loading is normal, then the explanation for and prediction of unexpected bone failure lies in understanding the mechanical properties of the whole bone-which come from its internal and external geometry, the mechanical properties of the hard tissue, and from how well the tissue repairs damage. Modern QCT and MRI imaging systems can measure the geometry of the mineralized tissue quite well in vivo-leaving the mechanical properties of the hard tissue and the ability of bone to repair damage as important unknown factors in predicting fractures. This review explains which material properties must be measured to understand why some bones fail unexpectedly despite our current ability to determine bone geometry and bone mineral content in vivo. Examples of how to measure the important mechanical properties are presented along with some analysis of potential drawbacks of each method. Particular attention is given to methods useful to characterize the loss of bone toughness caused by mechanical fatigue, drug side effects, and damage to the bone matrix.


Asunto(s)
Densidad Ósea/fisiología , Matriz Ósea/metabolismo , Huesos/metabolismo , Fracturas Óseas/metabolismo , Resistencia a la Tracción/fisiología , Animales , Fracturas Óseas/patología , Humanos , Osteoporosis/metabolismo
11.
J Biomech Eng ; 137(1)2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25322065

RESUMEN

Traumatic injuries can have systemic consequences, as the early inflammatory response after trauma can lead to tissue destruction at sites not affected by the initial injury. This systemic catabolism may occur in the skeleton following traumatic injuries such as anterior cruciate ligament (ACL) rupture. However, bone loss following injury at distant,unrelated skeletal sites has not yet been established. In the current study, we utilized a mouse knee injury model to determine whether acute knee injury causes a mechanically significant trabecular bone loss at a distant, unrelated skeletal site (L5 vertebral body).Knee injury was noninvasively induced using either high-speed (HS; 500 mm/s) or lowspeed(LS; 1 mm/s) tibial compression overload. HS injury creates an ACL rupture by midsubstance tear, while LS injury creates an ACL rupture with an associated avulsion bone fracture. At 10 days post-injury, vertebral trabecular bone structure was quantified using high-resolution microcomputed tomography (lCT), and differences in mechanical properties were determined using finite element modeling (FEM) and compressive mechanical testing. We hypothesized that knee injury would initiate a loss of trabecular bone structure and strength at the L5 vertebral body. Consistent with our hypothesis, we found significant decreases in trabecular bone volume fraction (BV/TV) and trabecular number at the L5 vertebral body in LS injured mice compared to sham (8.8% and 5.0%, respectively), while HS injured mice exhibited a similar, but lower magnitude response (5.1% and 2.5%, respectively). Contrary to our hypothesis, this decrease intrabecular bone structure did not translate to a significant deficit in compressive stiffness or ultimate load of the full trabecular body assessed by mechanical testing or FEM. However,we were able to detect significant decreases in compressive stiffness in both HS and LS injured specimens when FE models were loaded directly through the trabecular bone region (9.9% and 8.1%, and 3, respectively). This finding may be particularly important for osteoporotic fracture risk, as damage within vertebral bodies has been shown to initiate within the trabecular bone compartment. Altogether, these data point to a systemic trabecular bone loss as a consequence of fracture or traumatic musculoskeletal injury, which may be an underlying mechanism contributing to increased risk of refracture following an initial injury. This finding may have consequences for treatment of acute musculoskeletal injuries and the prevention of future bone fragility.


Asunto(s)
Traumatismos de la Rodilla/patología , Vértebras Lumbares/patología , Animales , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Vértebras Lumbares/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Microtomografía por Rayos X
13.
bioRxiv ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38766109

RESUMEN

Objective: Anterior Cruciate Ligament (ACL) injury develops the Osteoarthritis (OA) via two distinct processes: initial direct micro-injury of the cartilage surface by compressive force during ACL injury, and secondary joint instability due to the deficiency of the ACL. Using the conventional Compression-induced ACL-R and novel Non-Compression ACL-R models, we aimed to reveal the individual effects on OA progression after ACL injury. Methods: Twelve-week-old C57BL/6 male were randomly divided to three experimental groups: Compression ACL-R, Non-Compression ACL-R, and Intact. We performed the joint laxity test and microscope analysis at 0 days, in vivo imaging with matrix-metalloproteinases (MMPs) at 3 and 7 days, histological and micro-CT analysis at 0, 7, 14, and 28 days. Results: Although no differences in the joint laxity were observed between both ACL-R groups, the Compression ACL-R group exhibited a significant increase of cartilage roughness immediately after injury compared with the Non-Compression group. At 7 days, Compression group increased MMPs-induced fluorescence intensity slightly and MMP-13 positive cell ratio of chondrocytes significantly than that in the Non-Compression group. Moreover, histological cartilage degeneration initiated in the whole joint level of the Compression group at the same time point. Micro-CT analysis revealed that sclerosis of tibial Subchondral bone in the Compression group developed significantly more than in the Non-Compression group at 28 days, especially in the medial tibial compartment. Conclusions: Concurrent joint contact during ACL rupture caused initial micro-damage on the cartilage surface and early cartilage degeneration with MMP-13 production, leading to later bone formation in the subchondral bone.

14.
Bone ; 179: 116976, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042445

RESUMEN

Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Huesos , Factores de Transcripción MEF2 , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción MEF2/genética , Osteoblastos/metabolismo , Osteogénesis/genética
15.
Matrix Biol Plus ; 23: 100153, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38882396

RESUMEN

Fish oils rank among the world's most popular nutritional supplements and are purported to have numerous health benefits. Previous work suggested that fish oils increase collagen production; however, the effect of fish oils on musculoskeletal health is poorly understood. Further, the divergent effects of omega-3 (Ω3FA) and saturated fatty acids (SFA) remains poorly understood. We tested the effects of Ω3FA and SFAs on in vitro-engineered human ligament (EHL) function. EHLs were treated with bovine serum albumin (BSA)-conjugated eicosapentaenoic acid (EPA, 20:5(n-3)), palmitic acid (PA, 16:0), or a BSA control for 6 days. EPA did not significantly alter, whereas PA significantly decreased EHL function and collagen content. To determine whether this was an in vitro artifact, mice were fed a control or high-lard diet for 14 weeks and musculoskeletal mass, insulin sensitivity, and the collagen content, and mechanics of tendon and bone were determined. Body weight was 40 % higher on a HFD, but muscle, tendon, and bone mass did not keep up with body weight resulting in relative losses in muscle mass, tendon, and bone collagen, as well as mechanical properties. Importantly, we show that PA acutely decreases collagen synthesis in vitro to a similar extent as the decrease in collagen content with chronic treatment. These data suggest that Ω3FAs have a limited effect on EHLs, whereas SFA exert a negative effect on collagen synthesis resulting in smaller and weaker musculoskeletal tissues both in vitro and in vivo.

16.
J Vis Exp ; (199)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37843296

RESUMEN

Traumatic joint injuries such as anterior cruciate ligament (ACL) rupture or meniscus tears commonly lead to post-traumatic osteoarthritis (PTOA) within 10-20 years following injury. Understanding the early biological processes initiated by joint injuries (e.g., inflammation, matrix metalloproteinases (MMPs), cathepsin proteases, bone resorption) is crucial for understanding the etiology of PTOA. However, there are few options for in vivo measurement of these biological processes, and the early biological responses may be confounded if invasive surgical techniques or injections are used to initiate OA. In our studies of PTOA, we have used commercially available near-infrared protease activatable probes combined with fluorescence reflectance imaging (FRI) to quantify protease activity in vivo following non-invasive compression-induced ACL injury in mice. This non-invasive ACL injury method closely recapitulates clinically relevant injury conditions and is completely aseptic since it does not involve disrupting the skin or the joint capsule. The combination of these injury and imaging methods allows us to study the time course of protease activity at multiple time points following a traumatic joint injury.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Resorción Ósea , Osteoartritis , Ratones , Animales , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/complicaciones , Ligamento Cruzado Anterior/diagnóstico por imagen , Ligamento Cruzado Anterior/cirugía , Péptido Hidrolasas
17.
JBMR Plus ; 7(8): e10759, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37614305

RESUMEN

Post traumatic osteoarthritis (PTOA) is a form of secondary osteoarthritis (OA) that develops in ~50% of cases of severe articular joint injuries and leads to chronic and progressive degradation of articular cartilage and other joint tissues. PTOA progression can be exacerbated by repeated injury and systemic inflammation. Few studies have examined approaches for blunting or slowing down PTOA progression with emphasis on systemic inflammation; most arthritis studies focused on the immune system have been in the context of rheumatoid arthritis. To examine how the gut microbiome affects systemic inflammation during PTOA development, we used a chronic antibiotic treatment regimen starting at weaning for 6 weeks before anterior cruciate ligament (ACL) rupture in STR/ort mice combined with lipopolysaccharide (LPS)-induced systemic inflammation. STR/ort mice develop spontaneous OA as well as a more severe PTOA phenotype than C57Bl/6J mice. By 6 weeks post injury, histological examination showed a more robust cartilage staining in the antibiotic-treated (AB) STR/ort mice than in the untreated STR/ort controls. Furthermore, we also examined the effects of AB treatment on systemic inflammation and found that the effects of LPS administration before injury are also blunted by AB treatment in STR/ort mice. The AB- or AB+LPS-treated STR/ort injured joints more closely resembled the C57Bl/6J VEH OA phenotypes than the vehicle- or LPS-treated STR/ort, suggesting that antibiotic treatment has the potential to slow disease progression and should be further explored therapeutically as prophylactic post injury. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

18.
Methods Mol Biol ; 2598: 345-356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36355304

RESUMEN

The utility of nonsurgical, mechanical compression-based joint injury models to study osteoarthritis pathogenesis and treatments is increasing. Joint injury may be induced via cyclic compression loading or acute overloading to induce anterior cruciate ligament rupture. Models utilizing mechanical testing systems are highly repeatable, require little expertise, and result in a predictable onset of osteoarthritis-like pathology on a rapidly progressing timeline. In this chapter, we describe the procedures and equipment needed to perform mechanical compression-induced initiation of osteoarthritis in mice and rats.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Cartílago Articular , Osteoartritis , Ratones , Ratas , Animales , Cartílago Articular/patología , Lesiones del Ligamento Cruzado Anterior/etiología , Lesiones del Ligamento Cruzado Anterior/patología , Lesiones del Ligamento Cruzado Anterior/cirugía , Osteoartritis/etiología , Osteoartritis/patología , Modelos Animales de Enfermedad
19.
JBMR Plus ; 7(4): e10724, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37065633

RESUMEN

Molecular oxygen levels vary during development and disease. Adaptations to decreased oxygen bioavailability (hypoxia) are mediated by hypoxia-inducible factor (HIF) transcription factors. HIFs are composed of an oxygen-dependent α subunit (HIF-α), of which there are two transcriptionally active isoforms (HIF-1α and HIF-2α), and a constitutively expressed ß subunit (HIFß). Under normoxic conditions, HIF-α is hydroxylated via prolyl hydroxylase domain (PHD) proteins and targeted for degradation via Von Hippel-Lindau (VHL). Under hypoxic conditions, hydroxylation via PHD is inhibited, allowing for HIF-α stabilization and induction of target transcriptional changes. Our previous studies showed that Vhl deletion in osteocytes (Dmp1-cre; Vhl f/f ) resulted in HIF-α stabilization and generation of a high bone mass (HBM) phenotype. The skeletal impact of HIF-1α accumulation has been well characterized; however, the unique skeletal impacts of HIF-2α remain understudied. Because osteocytes orchestrate skeletal development and homeostasis, we investigated the role of osteocytic HIF-α isoforms in driving HBM phenotypes via osteocyte-specific loss-of-function and gain-of-function HIF-1α and HIF-2α mutations in C57BL/6 female mice. Deletion of Hif1a or Hif2a in osteocytes showed no effect on skeletal microarchitecture. Constitutively stable, degradation-resistant HIF-2α (HIF-2α cDR), but not HIF-1α cDR, generated dramatic increases in bone mass, enhanced osteoclast activity, and expansion of metaphyseal marrow stromal tissue at the expense of hematopoietic tissue. Our studies reveal a novel influence of osteocytic HIF-2α in driving HBM phenotypes that can potentially be harnessed pharmacologically to improve bone mass and reduce fracture risk. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

20.
J Biomech ; 152: 111571, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37027962

RESUMEN

To investigate the biomechanical properties of rat bladder tissue after spinal cord injury (SCI) using uniaxial tensile testing. Evidence suggests the bladder wall undergoes remodeling following SCI. There is limited data describing the biomechanical properties of bladder wall after SCI. This study describes the changes in elastic and viscoelastic mechanical properties of bladder tissue using a rat model after SCI. Seventeen adult rats received mid-thoracic SCI. Basso, Beattie, and Bresnahan (BBB) locomotor testing was performed on the rats 7-14 days after injury quantifying the degree of SCI. Bladder tissue samples were collected from controls and spinal injured rats at 2- and 9-weeks post-injury. Tissue samples underwent uniaxial stress relaxation to determine instantaneous and relaxation modulus as well as monotonic load-to failure to determine Young's modulus, yield stress and strain, and ultimate stress. SCI resulted in abnormal BBB locomotor scores. Nine weeks post-injury, instantaneous modulus decreased by 71.0% (p = 0.03) compared to controls. Yield strain showed no difference at 2 weeks post-injury but increased 78% (p = 0.003) in SCI rats at 9 weeks post-injury. Compared to controls, ultimate stress decreased 46.5% (p = 0.05) at 2 weeks post-injury in SCI rats but demonstrated no difference at 9 weeks post-injury. The biomechanical properties of rat bladder wall 2 weeks after SCI showed minimal difference compared to controls. By week 9, SCI bladders had a reduction in instantaneous modulus and increased yield strain. The findings indicate biomechanical differences can be identified between control and experimental groups at 2- and 9-week intervals using uniaxial testing.


Asunto(s)
Traumatismos de la Médula Espinal , Vejiga Urinaria , Ratas , Animales , Ratas Sprague-Dawley , Médula Espinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA