Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Ophthalmol ; 10(3): 366-371, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28393026

RESUMEN

AIM: To investigate the effect of anti-vascular epithelial growth factor (VEGF) agents on the expression of fibrosis-related inflammatory mediators under normoxic and hypoxic conditions, and to further clarify the mechanism underlying fibrosis after anti-VEGF therapy. METHODS: Human retinal pigment epithelial (RPE) cells were incubated under normoxic and hypoxic conditions. For hypoxia treatment, CoCl2 at 200 µmol/L was added to the media. ARPE-19 cells were treated as following: 1) control group: no treatment; 2) bevacizumab group: bevacizumab at 0.25 mg/mL was added to the media; 3) hypoxia group: CoCl2 at 200 µmol/L was added to the media; 4) hypoxia+bevacizumab group: CoCl2 at 200 µmol/L and bevacizumab at 0.25 mg/mL were added to the media. The expression of interleukin (IL)-1ß, IL-6, IL-8 and tumor necrosis factor (TNF)-α were evaluated using real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) at 6, 12, 24 and 48h. RESULTS: Both mRNA and protein levels of IL-1ß, IL-6 and IL-8 were statistically significantly higher in the bevacizumab group than in the control group at each time point, and TNF-α gene and protein expression was only significantly higher only at 24 and 48h (P<0.05). Under hypoxic conditions, bevacizumab significantly increased the expression of IL-1ß, IL-6, IL-8 and TNF-α at 6, 12, 24 and 48h (P<0.05). IL-1ß, IL-8 and TNF-α peaked at 24h and IL-6 peaked at 12h after the bevacizumab treatment under both normoxic and hypoxic conditions. CONCLUSION: Treatment of ARPE-19 cells with bevacizumab can significantly increase the expression of fibrosis-related inflammatory mediators under both normoxic and hypoxic conditions. Inflammatory factors might be involved in the process of fibrosis after anti-VEGF therapy, and the up-regulation of inflammatory factors induced by anti-VEGF drugs might promote the fibrosis process.

2.
Int J Ophthalmol ; 8(2): 245-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25938035

RESUMEN

AIM: To investigate the effect of bevacizumab treatment on Notch signaling and the induction of epithelial-of-mesenchymal transition (EMT) in human retinal pigment epithelial cells (ARPE-19) in vitro. METHODS: In vitro cultivated ARPE-19 cells were treated with 0.25 mg/mL bevacizumab for 12, 24, and 48h. Cell morphology changes were observed under an inverted microscope. The expression of zonula occludens-1 (ZO-1), vimentin and Notch-1 intracellular domain (NICD) was examined by immunofluorescence. The mRNA levels of ZO-1, α-SMA, Notch-1, Notch-2, Notch-4, Dll4, Jagged-1, RBP-Jk and Hes-1 expression were evaluated with quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of α-SMA, NICD, Hes-1 and Dll-4 expression were examined with Western blot. RESULTS: Bevacizumab stimulation increased the expression of α-SMA and vimentin in ARPE-19 cells which changed into spindle-shaped fibroblast-like cells. Meanwhile, the mRNA expression of Hes-1 increased and the protein expression of Hes-1 and NICD also increased, which Notch signaling was activated. The mRNA expression of Notch-1, Jagged-1 and RBP-Jk increased at 48h, and while Dll4 mRNA and protein expression did not change after bevacizumab treatment. CONCLUSION: Jagged-1/Notch-1 signaling may play a critical role in bevacizumab-induced EMT in ARPE-19 cells, which provides a novel insight into the pathogenesis of intravitreal bevacizumab-associated complication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA