Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Toxicol ; 32(4): 1412-1425, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27539004

RESUMEN

PM2.5 travels along the respiratory tract and enters systemic blood circulation. Studies have shown that PM2.5 increases the incidence of various diseases not only in adults but also in newborn infants. It causes chronic inflammation in pregnant women and retards fetal development. In this study, pregnant rats were exposed to PM2.5 for extended periods of time and it was found that PM2.5 exposure increased immune cells in mother rats. In addition, cytokines and free radicals rapidly accumulated in the amniotic fluid and indirectly affected the fetuses. The authors collected cerebral cortex and hippocampus samples at E18 and analyzed changes of miRNA levels. Expression levels of cortical miR-6315, miR-3588, and miR-466b-5p were upregulated, and positively correlated with the genes Pkn2 (astrocyte migration), Gorab (neuritogenesis), and Mobp (allergic encephalomyelitis). In contrast, PM2.5 decreased expression of miR-338-5p and let-7e-5p, both related to mental development. Further, PM2.5 exposure increased miR-3560 and let-7b-5p in the hippocampus, two proteins that regulate genes Oxct1 and Lin28b that control ketogenesis and glycosylation, and neural cell differentiation, respectively. miR-99b-5p, miR-92b-5p, and miR-99a-5p were decreased, leading to reduced expression of Kbtbd8 and Adam11 which reduced cell mitosis, migration, and differentiation, and inhibited learning abilities and motor coordination of the fetus. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1412-1425, 2017.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Hipocampo/efectos de los fármacos , Exposición Materna , Material Particulado/toxicidad , Adulto , Líquido Amniótico/efectos de los fármacos , Líquido Amniótico/metabolismo , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Citocinas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Intercambio Materno-Fetal , MicroARNs/biosíntesis , MicroARNs/genética , Embarazo , Ratas , Ratas Sprague-Dawley , Transcriptoma/efectos de los fármacos
2.
Front Pharmacol ; 15: 1347882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584602

RESUMEN

Objective: Our study provides an innovative approach to exploring herbal formulas that contribute to the promotion of sustainability and biodiversity conservation. We employ data mining, integrating keyword extraction, association rules, and LSTM-based generative models to analyze classical Traditional Chinese Medicine (TCM) texts. We systematically decode classical Chinese medical literature, conduct statistical analyses, and link these historical texts with modern pharmacogenomic references to explore potential alternatives. Methods: We present a novel iterative keyword extraction approach for discerning diverse herbs in historical TCM texts from the Pu-Ji Fang copies. Utilizing association rules, we uncover previously unexplored herb pairs. To bridge classical TCM herbal pairs with modern genetic relationships, we conduct gene-herb searches in PubMed and statistically validate this genetic literature as supporting evidence. We have expanded on the present work by developing a generative language model for suggesting innovative TCM formulations based on textual herb combinations. Results: We collected associations with 7,664 PubMed cross-search entries for gene-herb and 934 for Shenqifuzheng Injection as a positive control. We analyzed 16,384 keyword combinations from Pu-Ji Fang's 426 volumes, employing statistical methods to probe gene-herb associations, focusing on examining differences among the target genes and Pu-Ji Fang herbs. Conclusion: Analyzing Pu-Ji Fang reveals a historical focus on flavor over medicinal aspects in TCM. We extend our work on developing a generative model from classical textual keywords to rapidly produces novel herbal compositions or TCM formulations. This integrated approach enhances our comprehension of TCM by merging ancient text analysis, modern genetic research, and generative modeling.

3.
PLoS One ; 11(5): e0155469, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27171432

RESUMEN

Traditional lung cancer treatments involve chemical or radiation therapies after surgical tumor removal; however, these procedures often kill normal cells as well. Recent studies indicate that chemotherapies, when combined with Traditional Chinese Medicines, may offer a new way to treat cancer. In vitro tests measuring the induction of autophagy and/or apoptosis were used to examine the cytotoxicity of SBPE, commonly used for lung inflammation on A549 cell line. The results indicated that intercellular levels of p62 and Atg12 were increased, LC3-I was cleaved into LC3-II, and autophagy was induced with SBPE only. After 24 hours, the apoptotic mechanism was induced. If the Cisplatin was added after cells reached the autophagy state, we observed synergistic effects of the two could achieve sufficient death of lung cancer cells. Therefore, the Cisplatin dosage used to induce apoptosis could be reduced by half, and the amount of time needed to achieve the inhibitory concentration of 50% was also half that of the original. In addition to inducing autophagy within a shortened period of time, the SBPE and chemotherapy drug combination therapy was able to achieve the objective of rapid low-dosage cancer cell elimination. Besides, SBPE was applied with Gemcitabine or Paclitaxel, and found that the combination treatment indeed achieve improved lung cancer cell killing effects. However, SBPE may also be less toxic to normal cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Cisplatino/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Medicina Tradicional China , Extractos Vegetales/uso terapéutico , Células A549 , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Neoplasias Pulmonares/patología , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Extractos Vegetales/farmacología , Reproducibilidad de los Resultados
4.
Am J Chin Med ; 44(2): 355-76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27080945

RESUMEN

Epidemiological studies show increased particulate matter (PM[Formula: see text]) particles in ambient air are correlated with increased myocardial infarctions. Given the close association of capillaries and alveoli, the dysfunction is caused when inhaled PM[Formula: see text] particles come in close proximity to capillary endothelial cells. We previously suggested that the inhalation of PM[Formula: see text] diesel exhaust particles (DEP) induces oxidative stress and upregulates the Nrf2/HO-1 pathway, inducing vascular permeability factor VEGFA secretion, which results in cell-cell adherens junction disruption and PM[Formula: see text] transmigratation into circulation. Here, we minimized the level that PM[Formula: see text] traveled in the bloodstream by pre-supplementing with a traditional Chinese medicine (TCM) Ganoderma tsugae DMSO extract (GTDE) prior to PM[Formula: see text] exposure. Our results show that PM[Formula: see text] caused alterations in enzyme activities and cellular anti-oxidant balance. We found decreased glutathione levels, a reduced cellular redox ratio, increased ROS generation and cytotoxicity in the cellular fractions. The oxidative stress caused DNA damage and apoptosis, likely causing downstream molecular events that trigger vasculature permeabilization and, eventually, cardiovascular disorders. Our results show long-term GTDE treatment increased endogenous glutathione level, while PM[Formula: see text]-reduced glutathione levels and the cellular redox ratio. GTDE was protective against the genotoxic and apoptotic effects initiated by PM[Formula: see text] oxidative stress. Vascular permeability revealed that PM[Formula: see text] only accumulated on the surface of cells after GTDE treatment; no penetration was detected. After two weeks of GTDE treatment, VEGFA secretion was significantly reduced in human umbilical vein endothelial cells (HUVEC) and endothelial cell migration was blocked. Our results suggest GTDE prevents PM[Formula: see text] transmigration into the bloodstream, and the resultant dysfunction, by inhibiting oxidative stress production and endothelial permeability.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Ganoderma/química , Material Particulado/efectos adversos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/metabolismo , Infarto del Miocardio/inducido químicamente , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/metabolismo , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA