Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Genet Metab ; 142(1): 108436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552449

RESUMEN

Newborn screening (NBS) for metachromatic leukodystrophy (MLD) is based on first-tier measurement of sulfatides in dried blood spots (DBS) followed by second-tier measurement of arylsulfatase A in the same DBS. This approach is very precise with 0-1 false positives per ∼30,000 newborns tested. Recent data reported here shows that the sulfatide molecular species with an α-hydroxyl, 16­carbon, mono-unsaturated fatty acyl group (16:1-OH-sulfatide) is superior to the original biomarker 16:0-sulfatide in reducing the number of first-tier false positives. This result is consistent across 4 MLD NBS centers. By measuring 16:1-OH-sulfatide alone or together with 16:0-sulfatide, the estimated false positive rate is 0.048% and is reduced essentially to zero with second-tier arylsulfatase A activity assay. The false negative rate is predicted to be extremely low based on the demonstration that 40 out of 40 newborn DBS from clinically-confirmed MLD patients are detected with these methods. The work shows that NBS for MLD is extremely precise and ready for deployment. Furthermore, it can be multiplexed with several other inborn errors of metabolism already tested in NBS centers worldwide.


Asunto(s)
Cerebrósido Sulfatasa , Pruebas con Sangre Seca , Leucodistrofia Metacromática , Tamizaje Neonatal , Sulfoglicoesfingolípidos , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/sangre , Recién Nacido , Sulfoglicoesfingolípidos/sangre , Tamizaje Neonatal/métodos , Cerebrósido Sulfatasa/sangre , Cerebrósido Sulfatasa/genética , Pruebas con Sangre Seca/métodos , Reacciones Falso Positivas , Biomarcadores/sangre
2.
Mol Genet Metab ; 142(1): 108349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458124

RESUMEN

Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non­neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.


Asunto(s)
Cerebrósido Sulfatasa , Leucodistrofia Metacromática , Tamizaje Neonatal , Humanos , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/genética , Tamizaje Neonatal/métodos , Recién Nacido , Proyectos Piloto , Cerebrósido Sulfatasa/genética , Femenino , Masculino , Sulfoglicoesfingolípidos , Lactante , Terapia Genética
3.
Hum Mutat ; 43(12): 2265-2278, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36153662

RESUMEN

A rare and fatal disease resembling mucopolysaccharidosis in infants, is caused by impaired intracellular endocytic trafficking due to deficiency of core components of the intracellular membrane-tethering protein complexes, HOPS, and CORVET. Whole exome sequencing identified a novel VPS33A mutation in a patient suffering from a variant form of mucopolysaccharidosis. Electron and confocal microscopy, immunoblotting, and glycosphingolipid trafficking experiments were undertaken to investigate the effects of the mutant VPS33A in patient-derived skin fibroblasts. We describe an attenuated juvenile form of VPS33A-related syndrome-mucopolysaccharidosis plus in a man who is homozygous for a hitherto unknown missense mutation (NM_022916.4: c.599 G>C; NP_075067.2:p. Arg200Pro) in a conserved region of the VPS33A gene. Urinary glycosaminoglycan (GAG) analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid. We showed decreased abundance of VPS33A in patient derived fibroblasts and provided evidence that the p.Arg200Pro mutation leads to destablization of the protein and proteasomal degradation. As in the infantile form of mucopolysaccharidosis plus, the endocytic compartment in the fibroblasts also expanded-a phenomenon accompanied by increased endolysosomal acidification and impaired intracellular glycosphingolipid trafficking. Experimental treatment of the patient's cultured fibroblasts with the proteasome inhibitor, bortezomib, or exposure to an inhibitor of glucosylceramide synthesis, eliglustat, improved glycosphingolipid trafficking. To our knowledge this is the first report of an attenuated juvenile form of VPS33A insufficiency characterized by appreciable residual endosomal-lysosomal trafficking and a milder mucopolysaccharidosis plus than the disease in infants. Our findings expand the proof of concept of redeploying clinically approved drugs for therapeutic exploitation in patients with juvenile as well as infantile forms of mucopolysaccharidosis plus disease.


Asunto(s)
Mutación Missense , Proteínas de Transporte Vesicular , Humanos , Masculino , Endosomas/metabolismo , Lisosomas/metabolismo , Mutación , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36142486

RESUMEN

Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher's disease, Niemann-Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients' needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.


Asunto(s)
Enfermedad de Gaucher , Enfermedades por Almacenamiento Lisosomal , Enfermedades de Niemann-Pick , Enfermedad de Gaucher/metabolismo , Humanos , Hidrolasas/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Mitocondrias , Enfermedades de Niemann-Pick/metabolismo
5.
Hum Mol Genet ; 28(15): 2514-2530, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31070736

RESUMEN

A rare lysosomal disease resembling a mucopolysaccharidosis with unusual systemic features, including renal disease and platelet dysfunction, caused by the defect in a conserved region of the VPS33A gene on human chromosome 12q24.31, occurs in Yakuts-a nomadic Turkic ethnic group of Southern Siberia. VPS33A is a core component of the class C core vacuole/endosome tethering (CORVET) and the homotypic fusion and protein sorting (HOPS) complexes, which have essential functions in the endocytic pathway. Here we show that cultured fibroblasts from patients with this disorder have morphological changes: vacuolation with disordered endosomal/lysosomal compartments and-common to sphingolipid diseases-abnormal endocytic trafficking of lactosylceramide. Urine glycosaminoglycan studies revealed a pathological excess of sialylated conjugates as well as dermatan and heparan sulphate. Lipidomic screening showed elevated ß-D-galactosylsphingosine with unimpaired activity of cognate lysosomal hydrolases. The 3D crystal structure of human VPS33A predicts that replacement of arginine 498 by tryptophan will de-stabilize VPS33A folding. We observed that the missense mutation reduced the abundance of full-length VPS33A and other components of the HOPS and CORVET complexes. Treatment of HeLa cells stably expressing the mutant VPS33A with a proteasome inhibitor rescued the mutant protein from degradation. We propose that the disease is due to diminished intracellular abundance of intact VPS33A. Exposure of patient-derived fibroblasts to the clinically approved proteasome inhibitor, bortezomib, or inhibition of glucosylceramide synthesis with eliglustat, partially corrected the impaired lactosylceramide trafficking defect and immediately suggest therapeutic avenues to explore in this fatal orphan disease.


Asunto(s)
Antígenos CD/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/genética , Endocitosis , Lactosilceramidos/metabolismo , Lisosomas/metabolismo , Mutación Missense , Proteínas de Transporte Vesicular/genética , Bortezomib/uso terapéutico , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/fisiopatología , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Células HeLa , Humanos , Lactante , Lisosomas/fisiología , Masculino , Mucopolisacaridosis , Fenotipo , Inhibidores de Proteasoma/uso terapéutico , Conformación Proteica , Pirrolidinas/uso terapéutico , Siberia , Proteínas de Transporte Vesicular/metabolismo , Secuenciación del Exoma
6.
Hum Mutat ; 38(11): 1555-1568, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28752568

RESUMEN

Mucopolysaccharidosis Type I (MPS I) is a lysosomal storage disorder with varying degrees of phenotypic severity caused by mutations in IDUA. Over 200 disease-causing variants in IDUA have been reported. We describe the profile of disease-causing variants in 291 individuals with MPS I for whom IDUA sequencing was performed, focusing on the UK subset of the cohort. A total of 63 variants were identified, of which 20 were novel, and the functional significance of the novel variants is explored. The severe form of MPS I is treated with hematopoietic stem cell transplantation, known to have improved outcomes with earlier age at treatment. Developing genotype-phenotype relationships would therefore have considerable clinical utility, especially in the light of the development of newborn screening programs for MPS I. Associations between genotype and phenotype are examined in this cohort, particularly in the context of the profile of variants identified in UK individuals. Relevant associations can be made for the majority of UK individuals based on the presence of nonsense or truncating variants as well as other associations described in this report.


Asunto(s)
Estudios de Asociación Genética , Iduronidasa/genética , Mucopolisacaridosis I/diagnóstico , Mucopolisacaridosis I/genética , Mutación , Alelos , Activación Enzimática , Genotipo , Humanos , Iduronidasa/metabolismo , Mucopolisacaridosis I/epidemiología , Fenotipo , Análisis de Secuencia de ADN , Índice de Severidad de la Enfermedad , Reino Unido/epidemiología
7.
Mol Genet Metab ; 120(3): 247-254, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28065440

RESUMEN

Mucopolysaccharidoses (MPSs) and mucolipidoses (ML) are groups of lysosomal storage disorders in which lysosomal hydrolases are deficient leading to accumulation of undegraded glycosaminoglycans (GAGs), throughout the body, subsequently resulting in progressive damage to multiple tissues and organs. Assays using tandem mass spectrometry (MS/MS) have been established to measure GAGs in serum or plasma from MPS and ML patients, but few studies were performed to determine whether these assays are sufficiently robust to measure GAG levels in dried blood spots (DBS) of patients with MPS and ML. MATERIAL AND METHODS: In this study, we evaluated GAG levels in DBS samples from 124 MPS and ML patients (MPS I=16; MPS II=21; MPS III=40; MPS IV=32; MPS VI=10; MPS VII=1; ML=4), and compared them with 115 age-matched controls. Disaccharides were produced from polymer GAGs by digestion with chondroitinase B, heparitinase, and keratanase II. Subsequently, dermatan sulfate (DS), heparan sulfate (HS-0S, HS-NS), and keratan sulfate (mono-sulfated KS, di-sulfated KS, and ratio of di-sulfated KS in total KS) were measured by MS/MS. RESULTS: Untreated patients with MPS I, II, VI, and ML had higher levels of DS compared to control samples. Untreated patients with MPS I, II, III, VI, and ML had higher levels of HS-0S; and untreated patients with MPS II, III and VI and ML had higher levels of HS-NS. Levels of KS were age dependent, so although levels of both mono-sulfated KS and di-sulfated KS were generally higher in patients, particularly for MPS II and MPS IV, age group numbers were not sufficient to determine significance of such changes. However, the ratio of di-sulfated KS in total KS was significantly higher in all MPS patients younger than 5years old, compared to age-matched controls. MPS I and VI patients treated with HSCT had normal levels of DS, and MPS I, VI, and VII treated with ERT or HSCT had normal levels of HS-0S and HS-NS, indicating that both treatments are effective in decreasing blood GAG levels. CONCLUSION: Measurement of GAG levels in DBS is useful for diagnosis and potentially for monitoring the therapeutic efficacy in MPS.


Asunto(s)
Pruebas con Sangre Seca/métodos , Glicosaminoglicanos/sangre , Mucolipidosis/diagnóstico , Mucopolisacaridosis/diagnóstico , Adolescente , Adulto , Factores de Edad , Niño , Preescolar , Cromatografía Liquida , Dermatán Sulfato/sangre , Femenino , Heparitina Sulfato/sangre , Humanos , Lactante , Recién Nacido , Sulfato de Queratano/sangre , Masculino , Mucolipidosis/metabolismo , Mucopolisacaridosis/metabolismo , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem , Adulto Joven
8.
J Inherit Metab Dis ; 40(3): 455-460, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28283844

RESUMEN

Premature death in untreated children with Hurler syndrome (HS) in the first decade of life is largely due to life-threatening cardiopulmonary complications. We examined the long-term survival and cardiopulmonary outcome in 54 children undergoing haematopoietic stem cell transplantation (HSCT) at the Royal Manchester Children's Hospital from 1985 to 2008. The median age at first HSCT was 15.1 months. Eighteen had graft failure and nine died after first HSCT. Of 18 patients with graft failure, 17 underwent second HSCT and the remaining one was lost to follow-up (LOF). Twelve were alive-and-engrafted after second HSCT. The overall survival at one year and 20-years was the same at 73.7%. Six children were followed up at the referral centers and excluded from cardiopulmonary endpoint review. Of the 33 evaluable children for the cardiopulmonary endpoints, nine (27.3%) had normal cardiac assessment. Of the four children on angiotensin-converting-enzyme inhibitors, two had mild cardiomyopathy and two had aortic valvular replacement. Twenty (60%) had mild/moderate mitral and/or aortic insufficiencies. Two had overnight hypoxia needing nocturnal non-invasive support. Enzyme level and donor chimerism are important predictors of long-term cardiac outcome.


Asunto(s)
Cardiopatías/etiología , Enfermedades Pulmonares/etiología , Mucopolisacaridosis I/complicaciones , Mucopolisacaridosis I/mortalidad , Preescolar , Femenino , Enfermedad Injerto contra Huésped/mortalidad , Cardiopatías/mortalidad , Cardiopatías/patología , Trasplante de Células Madre Hematopoyéticas , Humanos , Lactante , Enfermedades Pulmonares/mortalidad , Masculino , Resultado del Tratamiento
9.
J Inherit Metab Dis ; 40(1): 151-158, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27718145

RESUMEN

BACKGROUND: Mucopolysaccharidoses (MPS) are a group of inborn errors of metabolism that are progressive and usually result in irreversible skeletal, visceral, and/or brain damage, highlighting a need for early diagnosis. METHODS: This pilot study analyzed 2862 dried blood spots (DBS) from newborns and 14 DBS from newborn patients with MPS (MPS I, n = 7; MPS II, n = 2; MPS III, n = 5). Disaccharides were produced from polymer GAGs by digestion with chondroitinase B, heparitinase, and keratanase II. Heparan sulfate (0S, NS), dermatan sulfate (DS) and mono- and di-sulfated KS were measured by liquid chromatography tandem mass spectrometry (LC-MS/MS). Median absolute deviation (MAD) was used to determine cutoffs to distinguish patients from controls. Cutoffs were defined as median + 7× MAD from general newborns. RESULTS: The cutoffs were as follows: HS-0S > 90 ng/mL; HS-NS > 23 ng/mL, DS > 88 ng/mL; mono-sulfated KS > 445 ng/mL; di-sulfated KS > 89 ng/mL and ratio di-KS in total KS > 32 %. All MPS I and II samples were above the cutoffs for HS-0S, HS-NS, and DS, and all MPS III samples were above cutoffs for HS-0S and HS-NS. The rate of false positives for MPS I and II was 0.03 % based on a combination of HS-0S, HS-NS, and DS, and for MPS III was 0.9 % based upon a combination of HS-0S and HS-NS. CONCLUSIONS: Combination of levels of two or more different GAGs improves separation of MPS patients from unaffected controls, indicating that GAG measurements are potentially valuable biomarkers for newborn screening for MPS.


Asunto(s)
Glicosaminoglicanos/metabolismo , Mucopolisacaridosis/diagnóstico , Acetilglucosaminidasa/sangre , Acetilglucosaminidasa/metabolismo , Condroitinasas y Condroitín Liasas/sangre , Condroitinasas y Condroitín Liasas/metabolismo , Cromatografía Liquida/métodos , Dermatán Sulfato/sangre , Dermatán Sulfato/metabolismo , Disacáridos/sangre , Disacáridos/metabolismo , Glicosaminoglicanos/sangre , Heparitina Sulfato/sangre , Heparitina Sulfato/metabolismo , Humanos , Recién Nacido , Mucopolisacaridosis/sangre , Mucopolisacaridosis/metabolismo , Tamizaje Neonatal/métodos , Proyectos Piloto , Polisacárido Liasas/sangre , Polisacárido Liasas/metabolismo , Espectrometría de Masas en Tándem/métodos
10.
Mol Genet Metab ; 117(3): 373-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26832957

RESUMEN

Haematopoietic stem cell transplantation is the treatment of choice for the severe form of Mucopolysaccharidosis Type I, or Hurler syndrome. In many centres standard practice is to deliver enzyme replacement therapy alongside haematopoietic stem cell transplantation to improve the condition of the patient prior to transplant. We report the combined 10 year experience of this approach in two paediatric metabolic and transplant centres. Of 81 patients who underwent a first transplant procedure for Hurler, 88% (71/81) survived and 81% (66/81) were alive and engrafted at a median follow-up of 46 months (range 3-124 months). The incidence of grade II-IV acute and any chronic graft versus host disease was 17% and 11% respectively. Urinary glycosaminoglycans were significantly reduced after a period of enzyme replacement therapy, and further reductions were seen at 13-24 months and 25+months after transplantation. In several individuals with decreased cardiac contractility, an improvement of their condition during enzyme replacement therapy enabled them to undergo transplantation, with one individual receiving full intensity conditioning.


Asunto(s)
Terapia de Reemplazo Enzimático , Trasplante de Células Madre Hematopoyéticas , Mucopolisacaridosis I/terapia , Preescolar , Femenino , Estudios de Seguimiento , Glicosaminoglicanos/orina , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/etiología , Humanos , Iduronidasa/administración & dosificación , Lactante , Masculino , Análisis de Supervivencia , Factores de Tiempo , Resultado del Tratamiento
11.
Mol Genet Metab ; 114(2): 129-37, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25467058

RESUMEN

BACKGROUND: Antibody formation can interfere with effects of enzyme replacement therapy (ERT) in lysosomal storage diseases. Biomarkers are used as surrogate marker for disease burden in MPS I, but large systematic studies evaluating the response of biomarkers to ERT are lacking. We, for the first time, investigated the response of a large panel of biomarkers to long term ERT in MPS I patients and correlate these responses with antibody formation and antibody mediated cellular uptake inhibition. METHODS: A total of 428 blood and urine samples were collected during long-term ERT in 24 MPS I patients and an extensive set of biomarkers was analyzed, including heparan sulfate (HS) and dermatan sulfate (DS) derived disaccharides; total urinary GAGs (DMBu); urinary DS:CS ratio and serum heparin co-factor II thrombin levels (HCII-T). IgG antibody titers and the effect of antibodies on cellular uptake of the enzyme were determined for 23 patients. RESULTS: Median follow-up was 2.3 years. In blood, HS reached normal levels more frequently than DS (50% vs 12.5%, p=0.001), though normalization could take several years. DMBu normalized more rapidly than disaccharide levels in urine (p=0.02). Nineteen patients (83%) developed high antibody titers. Significant antibody-mediated inhibition of enzyme uptake was observed in 8 patients (35%), and this correlated strongly with a poorer biomarker response for HS and DS in blood and urine as well as for DMBu, DS:CS-ratio and HCII-T (all p<0.006). CONCLUSIONS: This study shows that, despite a response of all studied biomarkers to initiation of ERT, some biomarkers were less responsive than others, suggesting residual disease activity. In addition, the correlation of cellular uptake inhibitory antibodies with a decreased biomarker response demonstrates a functional role of these antibodies which may have important clinical consequences.


Asunto(s)
Biomarcadores/análisis , Terapia de Reemplazo Enzimático , Iduronidasa/inmunología , Iduronidasa/uso terapéutico , Inmunoglobulina G/sangre , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/inmunología , Adolescente , Adulto , Niño , Preescolar , Dermatán Sulfato/análisis , Disacáridos/análisis , Disacáridos/sangre , Disacáridos/orina , Femenino , Estudios de Seguimiento , Cofactor II de Heparina/análisis , Heparitina Sulfato/análisis , Heparitina Sulfato/sangre , Heparitina Sulfato/orina , Humanos , Lactante , Recién Nacido , Masculino , Mucopolisacaridosis I/sangre , Mucopolisacaridosis I/orina , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/uso terapéutico , Trombina/análisis , Adulto Joven
12.
Int J Neonatal Screen ; 10(3)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39051401

RESUMEN

Metachromatic leukodystrophy (MLD) is a fatal inherited lysosomal storage disease that can be detected through newborn bloodspot screening. The feasibility of the screening assay and the clinical rationale for screening for MLD have been previously demonstrated, so the aim of this study is to determine whether the addition of screening for MLD to the routine newborn screening program in the UK is a cost-effective use of National Health Service (NHS) resources. A health economic analysis from the perspective of the NHS and Personal Social Services was developed based on a decision-tree framework for each MLD subtype using long-term outcomes derived from a previously presented partitioned survival and Markov economic model. Modelling inputs for parameters related to epidemiology, test characteristics, screening and treatment costs were based on data from three major UK specialist MLD hospitals, structured expert opinion and published literature. Lifetime costs and quality-adjusted life years (QALYs) were discounted at 1.5% to account for time preference. Uncertainty associated with the parameter inputs was explored using sensitivity analyses. This health economic analysis demonstrates that newborn screening for MLD is a cost-effective use of NHS resources using a willingness-to-pay threshold appropriate to the severity of the disease; and supports the inclusion of MLD into the routine newborn screening programme in the UK.

13.
J Clin Med ; 13(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38592278

RESUMEN

Clinical findings of hepatomegaly and splenomegaly, the abnormal enlargement of the liver and spleen, respectively, should prompt a broad differential diagnosis that includes metabolic, congestive, neoplastic, infectious, toxic, and inflammatory conditions. Among the metabolic diseases, lysosomal storage diseases (LSDs) are a group of rare and ultrarare conditions with a collective incidence of 1 in 5000 live births. LSDs are caused by genetic variants affecting the lysosomal enzymes, transporters, or integral membrane proteins. As a result, abnormal metabolites accumulate in the organelle, leading to dysfunction. Therapeutic advances, including early diagnosis and disease-targeted management, have improved the life expectancy and quality of life of people affected by certain LSDs. To access these new interventions, LSDs must be considered in patients presenting with hepatomegaly and splenomegaly throughout the lifespan. This review article navigates the diagnostic approach for individuals with hepatosplenomegaly particularly focusing on LSDs. We provide hints in the history, physical exam, laboratories, and imaging that may identify LSDs. Additionally, we discuss molecular testing, arguably the preferred confirmatory test (over biopsy), accompanied by enzymatic testing when feasible.

14.
Orphanet J Rare Dis ; 19(1): 244, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918870

RESUMEN

BACKGROUND: Sebelipase alfa (Kanuma®) is approved for patients with Wolman disease (WD) at a dosage of 3-5 mg/kg once weekly. Survival rates in the second of two clinical trials was greater, despite recruiting more severely ill patients, probably related to higher initial and maximal doses. We aimed to evaluate the effective pharmacokinetics and pharmacodynamics of Sebelipase alfa when administered to patients with severe WD at 5 mg/kg twice weekly, an intensive regimen which was not assessed in the trials. METHODS: We recruited 3 patients receiving Sebelipase alfa 5 mg/kg twice weekly. We measured LAL activity in leukocytes and plasma oxysterol concentration in two patients and LAL activity in fibroblasts in one patient. Clinical follow up was also assessed. RESULTS: Analyses of LAL activity and oxysterols demonstrate that there is short-lived enzyme activity post-dosing which is associated with the release of stored lipids. Clinical data demonstrate that 5 mg/kg twice weekly dosing is well tolerated and effective. CONCLUSION: 5 mg/kg twice weekly dosing with Sebelipase alfa rescues severely ill infants with WD by increasing substrate clearance. There is biologically relevant lipid accumulation in the 'trough' periods before the next dosing, even with this intensive regimen.


Asunto(s)
Esterol Esterasa , Enfermedad de Wolman , Humanos , Lactante , Esterol Esterasa/administración & dosificación , Esterol Esterasa/uso terapéutico , Enfermedad de Wolman/tratamiento farmacológico
15.
J Inherit Metab Dis ; 36(2): 293-307, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23371450

RESUMEN

Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is an autosomal recessive lysosomal storage disorder resulting from a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Diagnosis can be challenging and requires agreement of clinical, radiographic, and laboratory findings. A group of biochemical genetics laboratory directors and clinicians involved in the diagnosis of MPS IVA, convened by BioMarin Pharmaceutical Inc., met to develop recommendations for diagnosis. The following conclusions were reached. Due to the wide variation and subtleties of radiographic findings, imaging of multiple body regions is recommended. Urinary glycosaminoglycan analysis is particularly problematic for MPS IVA and it is strongly recommended to proceed to enzyme activity testing even if urine appears normal when there is clinical suspicion of MPS IVA. Enzyme activity testing of GALNS is essential in diagnosing MPS IVA. Additional analyses to confirm sample integrity and rule out MPS IVB, multiple sulfatase deficiency, and mucolipidoses types II/III are critical as part of enzyme activity testing. Leukocytes or cultured dermal fibroblasts are strongly recommended for enzyme activity testing to confirm screening results. Molecular testing may also be used to confirm the diagnosis in many patients. However, two known or probable causative mutations may not be identified in all cases of MPS IVA. A diagnostic testing algorithm is presented which attempts to streamline this complex testing process.


Asunto(s)
Glicosaminoglicanos/orina , Mucopolisacaridosis IV/diagnóstico , Mucopolisacaridosis IV/enzimología , Algoritmos , Fibroblastos/enzimología , Humanos , Leucocitos/enzimología , Mucolipidosis/diagnóstico , Mucopolisacaridosis IV/genética , Mucopolisacaridosis IV/orina , Enfermedad por Deficiencia de Múltiples Sulfatasas/diagnóstico , Mutación , Patología Molecular/métodos
17.
Mol Genet Metab Rep ; 37: 101009, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38053939

RESUMEN

Fucosidosis (OMIN# 230000) is a rare lysosomal storage disorder (LSDs) caused by mutations in the FUCA1 gene, leading to alpha-L-fucosidase deficiency; it is inherited as an autosomal recessive trait. Fucosidosis represents a disease spectrum with a wide variety of clinical features, but most affected patients have slow neurologic deterioration. Many patients die young and the long-term clinical outcomes in adult patients are poorly documented. Here, we report the long-term follow up of two Caucasian siblings, a 31-year-old man and 25-year-old woman. We describe the clinical, biochemical, radiological and genetic findings in two siblings affected by Fucosidosis and the differences between them after 19-years follow up. The dermatological features of the younger sibling have been reported previously by Bharati et al. (2007). Both patients have typical features of Fucosidosis, such as learning difficulties, ataxia, and angiokeratomas with differing severity. Case 1 presents severe ataxia with greater limitation of mobility, multiple dysostoses, angiokeratomas on his limbs, retinal vein enlargement and increased tortuosity in the eye and gastrointestinal symptoms. Biochemical analysis demonstrated a deficiency of alpha-fucosidase in leucocytes. Case 2 has a greater number of angiokeratomas and has suffered three psychotic episodes. The diagnosis of Fucosidosis was confirmed in cultured skin fibroblast at the age of 12 years. Molecular analysis of the FUCA1 gene showed a heterozygous mutation c.998G > A p.(Gly333Asp), with a pathogenic exon 4 deletion in the other allele in both patients. Conclusion. Fucosidosis presents a wide clinical heterogeneity and intrafamilial variability of symptoms. Psychosis and gastrointestinal symptoms have not been reported previously in Fucosidosis.

18.
Nanoscale ; 15(21): 9348-9364, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37165691

RESUMEN

Enzyme replacement therapy shows remarkable clinical improvement in treating lysosomal storage disorders. However, this therapeutic approach is hampered by limitations in the delivery of the enzyme to cells and tissues. Therefore, there is an urgent, unmet clinical need to develop new strategies to enhance the enzyme delivery to diseased cells. Graphene-based materials, due to their dimensionality and favourable pattern of interaction with cells, represent a promising platform for the loading and delivery of therapeutic cargo. Herein, the potential use of graphene-based materials, including defect-free graphene with positive or negative surface charge and graphene oxide with different lateral dimensions, was investigated for the delivery of lysosomal enzymes in fibroblasts derived from patients with Mucopolysaccharidosis VI and Pompe disease. We report excellent biocompatibility of all graphene-based materials up to a concentration of 100 µg mL-1 in the cell lines studied. In addition, a noticeable difference in the uptake profile of the materials was observed. Neither type of graphene oxide was taken up by the cells to a significant extent. In contrast, the two types of graphene were efficiently taken up, localizing in the lysosomes. Furthermore, we demonstrate that cationic graphene flakes can be used as carriers for arylsulfatase B enzyme, for the delivery of the lacking enzyme to the lysosomes of Mucopolysaccharidosis VI fibroblasts. Arylsulfatase B complexed with cationic graphene flakes not only retained the enzymatic activity, but also exerted biological effects almost twice as high as arylsulfatase B alone in the clearance of the substrate in Mucopolysaccharidosis VI fibroblasts. This study lays the groundwork for the potential use of graphene-based materials as carriers for enzyme replacement therapy in lysosomal storage disorders.


Asunto(s)
Grafito , Mucopolisacaridosis VI , N-Acetilgalactosamina-4-Sulfatasa , Humanos , Grafito/metabolismo , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , Mucopolisacaridosis VI/metabolismo , Fibroblastos , Lisosomas/metabolismo
19.
Haematologica ; 97(9): 1320-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22371174

RESUMEN

BACKGROUND: Mucopolysaccharidosis type I is caused by deficiency of α-L-iduronidase. Currently available treatment options include an allogeneic hematopoietic stem cell transplant and enzyme replacement therapy. Exogenous enzyme therapy appears promising but the benefits may be attenuated, at least in some patients, by the development of an immune response to the delivered enzyme. The incidence and impact of alloimmune responses in these patients remain unknown. DESIGN AND METHODS: We developed an immunoglobulin G enzyme-linked immunosorbent assay as well as in vitro catalytic enzyme inhibition and cellular uptake inhibition assays and quantified enzyme inhibition by allo-antibodies. We determined the impact of these antibodies in eight patients who received enzyme therapy before and during hematopoietic stem cell transplantation. In addition, 20 patients who had previously received an allogeneic stem cell transplant were tested to evaluate this treatment as an immune tolerance induction mechanism. RESULTS: High titer immune responses were seen in 87.5% (7/8) patients following exposure to α-L-iduronidase. These patients exhibited catalytic enzyme inhibition (5/8), uptake inhibition of catalytically active enzyme (6/8) or both (4/8). High antibody titers generally preceded elevation of previously described biomarkers of disease progression. The median time to development of immune tolerance was 101 days (range, 26-137) after transplantation. All 20 patients, including those with mixed chimerism (22%), tested 1 year after transplantation were tolerized despite normal enzyme levels. CONCLUSIONS: We found a high incidence of neutralizing antibodies in patients with mucopolysaccharidosis type I treated with enzyme replacement therapy. We also found that allogeneic hematopoietic stem cell transplantation was an effective and rapid immune tolerance induction strategy.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Terapia de Reemplazo Enzimático , Enfermedad Injerto contra Huésped/prevención & control , Isoanticuerpos/sangre , Mucopolisacaridosis I/terapia , Adolescente , Adulto , Animales , Niño , Preescolar , Terapia Combinada , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Trasplante de Células Madre Hematopoyéticas , Humanos , Tolerancia Inmunológica , Inmunoglobulina G , Lactante , Estudios Longitudinales , Masculino , Ratones , Mucopolisacaridosis I/sangre , Mucopolisacaridosis I/inmunología , Pronóstico , Adulto Joven
20.
Int J Neonatal Screen ; 8(1)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35323199

RESUMEN

Inherited metabolic disorders (IMDs) are mostly rare, have overlapping symptoms, and can be devastating and progressive. However, in many disorders, early intervention can improve long-term outcomes, and newborn screening (NBS) programmes can reduce caregiver stress in the journey to diagnosis and allow patients to receive early, and potentially pre-symptomatic, treatment. Across Europe there are vast discrepancies in the number of IMDs that are screened for and there is an imminent opportunity to accelerate the expansion of evidence-based screening programmes and reduce the disparities in screening programmes across Europe. A comprehensive list of IMDs was created for analysis. A novel NBS evaluation algorithm, described by Burlina et al. in 2021, was used to assess and prioritise IMDs for inclusion on expanded NBS programmes across Europe. Forty-eight IMDs, of which twenty-one were lysosomal storage disorders (LSDs), were identified and assessed with the novel NBS evaluation algorithm. Thirty-five disorders most strongly fulfil the Wilson and Jungner classic screening principles and should be considered for inclusion in NBS programmes across Europe. The recommended disorders should be evaluated at the national level to assess the economic, societal, and political aspects of potential screening programmes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA