Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ambient Intell Humaniz Comput ; : 1-21, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35789596

RESUMEN

Autonomous mission capabilities with optimal path are stringent requirements for Unmanned Aerial Vehicle (UAV) navigation in diverse applications. The proposed research framework is to identify an energy-efficient optimal path to achieve the designated missions for the navigation of UAVs in various constrained and denser obstacle prone regions. Hence, the present work is aimed to develop an optimal energy-efficient path planning algorithm through combining well known modified ant colony optimization algorithm (MACO) and a variant of A*, namely the memory-efficient A* algorithm (MEA*) for avoiding the obstacles in three dimensional (3D) environment and arrive at an optimal path with minimal energy consumption. The novelty of the proposed method relies on integrating the above two efficient algorithms to optimize the UAV path planning task. The basic design of this study is, that by utilizing an improved version of the pheromone strategy in MACO, the local trap and premature convergence are minimized, and also an optimal path is found by means of reward and penalty mechanism. The sole notion of integrating the MEA* algorithm arises from the fact that it is essential to overcome the stringent memory requirement of conventional A* algorithm and to resolve the issue of tracking only the edges of the grids. Combining the competencies of MACO and MEA*, a hybrid algorithm is proposed to avoid obstacles and find an efficient path. Simulation studies are performed by varying the number of obstacles in a 3D domain. The real-time flight trials are conducted experimentally using a UAV by implementing the attained optimal path. A comparison of the total energy consumption of UAV with theoretical analysis is accomplished. The significant finding of this study is that, the MACO-MEA* algorithm achieved 21% less energy consumption and 55% shorter execution time than the MACO-A*. moreover, the path traversed in both simulation and experimental methods is 99% coherent with each other. it confirms that the developed hybrid MACO-MEA* energy-efficient algorithm is a viable solution for UAV navigation in 3D obstacles prone regions.

2.
JMIR Form Res ; 5(11): e28951, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34757321

RESUMEN

BACKGROUND: A surveillance system is the foundation for disease prevention and control. Malaria surveillance is crucial for tracking regional and temporal patterns in disease incidence, assisting in recorded details, timely reporting, and frequency of analysis. OBJECTIVE: In this study, we aim to develop an integrated surveillance graphical app called FeverTracker, which has been designed to assist the community and health care workers in digital surveillance and thereby contribute toward malaria control and elimination. METHODS: FeverTracker uses a geographic information system and is linked to a web app with automated data digitization, SMS text messaging, and advisory instructions, thereby allowing immediate notification of individual cases to district and state health authorities in real time. RESULTS: The use of FeverTracker for malaria surveillance is evident, given the archaic paper-based surveillance tools used currently. The use of the app in 19 tribal villages of the Dhalai district in Tripura, India, assisted in the surveillance of 1880 suspected malaria patients and confirmed malaria infection in 93.4% (114/122; Plasmodium falciparum), 4.9% (6/122; P vivax), and 1.6% (2/122; P falciparum/P vivax mixed infection) of cases. Digital tools such as FeverTracker will be critical in integrating disease surveillance, and they offer instant data digitization for downstream processing. CONCLUSIONS: The use of this technology in health care and research will strengthen the ongoing efforts to eliminate malaria. Moreover, FeverTracker provides a modifiable template for deployment in other disease systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA