Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Care ; 25(1): 154, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888134

RESUMEN

BACKGROUND: Acute respiratory distress syndrome remains a heterogeneous syndrome for clinicians and researchers difficulting successful tailoring of interventions and trials. To this moment, phenotyping of this syndrome has been approached by means of inflammatory laboratory panels. Nevertheless, the systemic and inflammatory expression of acute respiratory distress syndrome might not reflect its respiratory mechanics and gas exchange. METHODS: Retrospective analysis of a prospective cohort of two hundred thirty-eight patients consecutively admitted patients under mechanical ventilation presenting with acute respiratory distress syndrome. All patients received standardized monitoring of clinical variables, respiratory mechanics and computed tomography scans at predefined PEEP levels. Employing latent class analysis, an unsupervised structural equation modelling method, on respiratory mechanics, gas-exchange and computed tomography-derived gas- and tissue-volumes at a PEEP level of 5cmH2O, distinct pulmonary phenotypes of acute respiratory distress syndrome were identified. RESULTS: Latent class analysis was applied to 54 respiratory mechanics, gas-exchange and CT-derived gas- and tissue-volume variables, and a two-class model identified as best fitting. Phenotype 1 (non-recruitable) presented lower respiratory system elastance, alveolar dead space and amount of potentially recruitable lung volume than phenotype 2 (recruitable). Phenotype 2 (recruitable) responded with an increase in ventilated lung tissue, compliance and PaO2/FiO2 ratio (p < 0.001), in addition to a decrease in alveolar dead space (p < 0.001), to a standardized recruitment manoeuvre. Patients belonging to phenotype 2 (recruitable) presented a higher intensive care mortality (hazard ratio 2.9, 95% confidence interval 1.7-2.7, p = 0.001). CONCLUSIONS: The present study identifies two ARDS phenotypes based on respiratory mechanics, gas-exchange and computed tomography-derived gas- and tissue-volumes. These phenotypes are characterized by distinctly diverse responses to a standardized recruitment manoeuvre and by a diverging mortality. Given multicentre validation, the simple and rapid identification of these pulmonary phenotypes could facilitate enrichment of future prospective clinical trials addressing mechanical ventilation strategies in ARDS.


Asunto(s)
Fenotipo , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/terapia , Anciano , Área Bajo la Curva , Estudios de Cohortes , Femenino , Humanos , Análisis de Clases Latentes , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Curva ROC , Síndrome de Dificultad Respiratoria/mortalidad , Estudios Retrospectivos , Resultado del Tratamiento
3.
Ann Intensive Care ; 11(1): 78, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33999274

RESUMEN

BACKGROUND: The ARDS is characterized by different degrees of impairment in oxygenation and distribution of the lung disease. Two radiological patterns have been described: a focal and a diffuse one. These two patterns could present significant differences both in gas exchange and in the response to a recruitment maneuver. At the present time, it is not known if the focal and the diffuse pattern could be characterized by a difference in the lung and chest wall mechanical characteristics. Our aims were to investigate, at two levels of PEEP, if focal vs. diffuse ARDS patterns could be characterized by different lung CT characteristics, partitioned respiratory mechanics and lung recruitability. METHODS: CT patterns were analyzed by two radiologists and were classified as focal or diffuse. The changes from 5 to 15 cmH2O in blood gas analysis and partitioned respiratory mechanics were analyzed. Lung CT scan was performed at 5 and 45 cmH2O of PEEP to evaluate lung recruitability. RESULTS: One-hundred and ten patients showed a diffuse pattern, while 58 showed a focal pattern. At 5 cmH2O of PEEP, the driving pressure and the elastance, both the respiratory system and of the lung, were significantly higher in the diffuse pattern compared to the focal (14 [11-16] vs 11 [9-15 cmH2O; 28 [23-34] vs 21 [17-27] cmH2O/L; 22 [17-28] vs 14 [12-19] cmH2O/L). By increasing PEEP, the driving pressure and the respiratory system elastance significantly decreased in diffuse pattern, while they increased or did not change in the focal pattern (Δ15-5: - 1 [- 2 to 1] vs 0 [- 1 to 2]; - 1 [- 4 to 2] vs 1 [- 2 to 5]). At 5 cmH2O of PEEP, the diffuse pattern had a lower lung gas (743 [537-984] vs 1222 [918-1974] mL) and higher lung weight (1618 [1388-2001] vs 1222 [1059-1394] g) compared to focal pattern. The lung recruitability was significantly higher in diffuse compared to focal pattern 21% [13-29] vs 11% [6-16]. Considering the median of lung recruitability of the whole population (16.1%), the recruiters were 65% and 22% in the diffuse and focal pattern, respectively. CONCLUSIONS: An early identification of lung morphology can be useful to choose the ventilatory setting. A diffuse pattern has a better response to the increase of PEEP and to the recruitment maneuver.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA