Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Neurobiol ; 39: 1-17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190069

RESUMEN

Proper functioning of the central nervous system depends on various tightly regulated phenomena, among which astrocyte-neuron interactions are of critical importance. Various studies across the species have highlighted the diverse yet crucial roles of astrocytes in regulating the nervous system development and functions. In simpler organisms like worms or insects, astrocyte-like cells govern basic functions such as structural support to neurons or regulation of extracellular ions. As the species complexity increases, so does the functional and morphological complexity of astrocytes. For example, in fish and amphibians, these cells are involved in synaptic development and ion homeostasis, while in reptiles and birds, astrocytes regulate synaptic transmission and plasticity and are reported to be involved in complex behaviors. Other species like those belonging to mammals and, in particular, primates have a heterogeneous population of astrocytes, exhibiting region-specific functional properties. In primates, these cells are responsible for proper synaptic transmission, neurotransmitter release and metabolism, and higher cognitive functions like learning, memory, or information processing. This chapter highlights the well-established and somewhat conserved roles of astrocytes and astrocyte-neuron interactions across the evolution of both invertebrates and vertebrates.


Asunto(s)
Astrocitos , Evolución Biológica , Plasticidad Neuronal , Neuronas , Transmisión Sináptica , Astrocitos/metabolismo , Animales , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Plasticidad Neuronal/fisiología , Humanos , Comunicación Celular/fisiología , Especificidad de la Especie
2.
STAR Protoc ; 4(3): 102482, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37561635

RESUMEN

Previous immunostaining protocols are highly specific for model organisms and often not suitable for diverse specimens that are non-perfused and over-fixed (i.e., tissues sitting in fixatives for months/year). Here, we present an immunofluorescence protocol for localizing protein targets in brain tissue from 11 model and non-model mammals. We describe preparation of both fresh and fixed tissues including steps for deparaffinization, fixation, and cryoprotection. We then detail immunofluorescence procedures including antigen retrieval, reducing autofluorescence, nuclear staining, mounting, and image collection.


Asunto(s)
Encéfalo , Mamíferos , Animales , Fijación del Tejido/métodos , Fijadores , Técnica del Anticuerpo Fluorescente
3.
Biomolecules ; 12(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35883478

RESUMEN

Acinetobacter baumannii is a Gram-negative pathogen, known to acquire resistance to antibiotics used in the clinic. The RNA-binding proteome of this bacterium is poorly characterized, in particular for what concerns the proteins containing RNA Recognition Motif (RRM). Here, we browsed the A. baumannii proteome for homologous proteins to the human HuR(ELAVL1), an RNA binding protein containing three RRMs. We identified a unique locus that we called AB-Elavl, coding for a protein with a single RRM with an average of 34% identity to the first HuR RRM. We also widen the research to the genomes of all the bacteria, finding 227 entries in 12 bacterial phyla. Notably we observed a partial evolutionary divergence between the RNP1 and RNP2 conserved regions present in the prokaryotes in comparison to the metazoan consensus sequence. We checked the expression at the transcript and protein level, cloned the gene and expressed the recombinant protein. The X-ray and NMR structural characterization of the recombinant AB-Elavl revealed that the protein maintained the typical ß1α1ß2ß3α2ß4 and three-dimensional organization of eukaryotic RRMs. The biochemical analyses showed that, although the RNP1 and RNP2 show differences, it can bind to AU-rich regions like the human HuR, but with less specificity and lower affinity. Therefore, we identified an RRM-containing RNA-binding protein actually expressed in A. baumannii.


Asunto(s)
Acinetobacter baumannii , Motivo de Reconocimiento de ARN , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Animales , Proteínas Portadoras/metabolismo , Humanos , Unión Proteica/genética , Proteoma/metabolismo , ARN/metabolismo , Motivo de Reconocimiento de ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Adv Drug Deliv Rev ; 181: 114088, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942276

RESUMEN

The Human antigen R (HuR) protein is an RNA-binding protein, ubiquitously expressed in human tissues, that orchestrates target RNA maturation and processing both in the nucleus and in the cytoplasm. A survey of known modulators of the RNA-HuR interactions is followed by a description of its structure and molecular mechanism of action - RRM domains, interactions with RNA, dimerization, binding modes with naturally occurring and synthetic HuR inhibitors. Then, the review focuses on HuR as a validated molecular target in oncology and briefly describes its role in inflammation. Namely, we show ample evidence for the involvement of HuR in the hallmarks and enabling characteristics of cancer, reporting findings from in vitro and in vivo studies; and we provide abundant experimental proofs of a beneficial role for the inhibition of HuR-mRNA interactions through silencing (CRISPR, siRNA) or pharmacological inhibition (small molecule HuR inhibitors).


Asunto(s)
Proteína 1 Similar a ELAV/antagonistas & inhibidores , Proteína 1 Similar a ELAV/metabolismo , Neoplasias/fisiopatología , ARN/metabolismo , ARN/farmacología , Animales , Sistemas de Liberación de Medicamentos/métodos , Silenciador del Gen , Humanos , Mediadores de Inflamación/metabolismo , Peso Molecular , Neoplasias/tratamiento farmacológico , ARN Mensajero/farmacología , ARN Interferente Pequeño/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA