Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(6): e2309243121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289950

RESUMEN

Staphylococcus aureus skin colonization and eosinophil infiltration are associated with many inflammatory skin disorders, including atopic dermatitis, bullous pemphigoid, Netherton's syndrome, and prurigo nodularis. However, whether there is a relationship between S. aureus and eosinophils and how this interaction influences skin inflammation is largely undefined. We show in a preclinical mouse model that S. aureus epicutaneous exposure induced eosinophil-recruiting chemokines and eosinophil infiltration into the skin. Remarkably, we found that eosinophils had a comparable contribution to the skin inflammation as T cells, in a manner dependent on eosinophil-derived IL-17A and IL-17F production. Importantly, IL-36R signaling induced CCL7-mediated eosinophil recruitment to the inflamed skin. Last, S. aureus proteases induced IL-36α expression in keratinocytes, which promoted infiltration of IL-17-producing eosinophils. Collectively, we uncovered a mechanism for S. aureus proteases to trigger eosinophil-mediated skin inflammation, which has implications in the pathogenesis of inflammatory skin diseases.


Asunto(s)
Dermatitis Atópica , Eosinofilia , Infecciones Estafilocócicas , Animales , Ratones , Eosinófilos/metabolismo , Staphylococcus aureus/metabolismo , Péptido Hidrolasas/metabolismo , Piel/metabolismo , Dermatitis Atópica/metabolismo , Infecciones Estafilocócicas/metabolismo , Celulitis (Flemón)/metabolismo , Celulitis (Flemón)/patología , Inflamación/metabolismo
2.
Circ Res ; 134(12): 1767-1790, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843292

RESUMEN

Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.


Asunto(s)
Enfermedades Autoinmunes , Miocarditis , Miocarditis/inmunología , Miocarditis/terapia , Miocarditis/etiología , Humanos , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/tratamiento farmacológico , Animales , Autoanticuerpos/inmunología , Autoinmunidad , Linfocitos T/inmunología , Autoantígenos/inmunología , Miosinas Cardíacas/inmunología
3.
J Immunol ; 210(9): 1198-1207, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068299

RESUMEN

The mammalian heart is characterized by the presence of striated myocytes, which allow continuous rhythmic contraction from early embryonic development until the last moments of life. However, the myocardium contains a significant contingent of leukocytes from every major class. This leukocyte pool includes both resident and nonresident immune cells. Over recent decades, it has become increasingly apparent that the heart is intimately sensitive to immune signaling and that myocardial leukocytes exhibit an array of critical functions, both in homeostasis and in the context of cardiac adaptation to injury. Here, we systematically review current knowledge of all major leukocyte classes in the heart, discussing their functions in health and disease. We also highlight the connection between the myocardium, immune cells, lymphoid organs, and both local and systemic immune responses.


Asunto(s)
Miocardio , Miocitos Cardíacos , Animales , Leucocitos , Transducción de Señal , Mamíferos
4.
Circulation ; 144(6): e123-e135, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34229446

RESUMEN

Myocarditis remains a clinical challenge in pediatrics. Originally, it was recognized at autopsy before the application of endomyocardial biopsy, which led to a histopathology-based diagnosis such as in the Dallas criteria. Given the invasive and low-sensitivity nature of endomyocardial biopsy, its diagnostic focus shifted to a reliance on clinical suspicion. With the advances of cardiac magnetic resonance, an examination of the whole heart in vivo has gained acceptance in the pursuit of a diagnosis of myocarditis. The presentation may vary from minimal symptoms to heart failure, life-threatening arrhythmias, or cardiogenic shock. Outcomes span full resolution to chronic heart failure and the need for heart transplantation with inadequate clues to predict the disease trajectory. The American Heart Association commissioned this writing group to explore the current knowledge and management within the field of pediatric myocarditis. This statement highlights advances in our understanding of the immunopathogenesis, new and shifting dominant pathogeneses, modern laboratory testing, and use of mechanical circulatory support, with a special emphasis on innovations in cardiac magnetic resonance imaging. Despite these strides forward, we struggle without a universally accepted definition of myocarditis, which impedes progress in disease-targeted therapy.


Asunto(s)
Miocarditis/diagnóstico , Miocarditis/terapia , Animales , Biopsia , Niño , Toma de Decisiones Clínicas , Terapia Combinada , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Humanos , Imagen Multimodal , Miocarditis/etiología , Miocarditis/mortalidad , Pronóstico , Evaluación de Síntomas , Resultado del Tratamiento
7.
Psychiatr Q ; 91(1): 137-145, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31786729

RESUMEN

The calcium-binding protein S100b is secreted by glial cells in the brain and is also expressed by melanocytes. In nanomolar concentrations, S100b is considered to be a neurotrophic factor, but in micromolar concentrations, it is thought to reflect CNS injury and inflammation. Seen as a potential biomarker in traumatic brain injury, meta-analytic data from several studies report that S100b levels are significantly higher in persons with long standing schizophrenia, but also among first-episode patients compared to healthy control subjects. However, ethnic or racial differences are typically not mentioned when reporting levels of S100b. We assessed serum S100b levels in persons with schizophrenia (n = 136) who were participants in two independent research studies using the same enzyme-linked immunoassay (ELISA). African-American subjects had significantly higher levels of S100b (41.9 pg/ml ± 62.2) than Caucasian subjects (24.9 pg/ml ± 45.4) in the combined dataset (Mann-Whitney U = 1307, p < 0.001), as well as in each independent study. There were no significant differences in S100b levels between men and women. No significant correlations were observed between S100b levels and demographic or clinical variables. These data suggest that ethnicity or race should be given serious consideration when studying and interpreting S100b levels in persons with schizophrenia.


Asunto(s)
Negro o Afroamericano/etnología , Subunidad beta de la Proteína de Unión al Calcio S100/sangre , Esquizofrenia/sangre , Esquizofrenia/etnología , Población Blanca/etnología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
Eur J Immunol ; 48(9): 1522-1538, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29953616

RESUMEN

The causative effect of GM-CSF produced by cardiac fibroblasts to development of heart failure has not been shown. We identified the pathological GM-CSF-producing cardiac fibroblast subset and the specific deletion of IL-17A signaling to these cells attenuated cardiac inflammation and heart failure. We describe here the CD45- CD31- CD29+ mEF-SK4+ PDGFRα+ Sca-1+ periostin+ (Sca-1+ ) cardiac fibroblast subset as the main GM-CSF producer in both experimental autoimmune myocarditis and myocardial infarction mouse models. Specific ablation of IL-17A signaling to Sca-1+ periostin+ cardiac fibroblasts (PostnCre Il17rafl/fl ) protected mice from post-infarct heart failure and death. Moreover, PostnCre Il17rafl/fl mice had significantly fewer GM-CSF-producing Sca-1+ cardiac fibroblasts and inflammatory Ly6Chi monocytes in the heart. Sca-1+ cardiac fibroblasts were not only potent GM-CSF producers, but also exhibited plasticity and switched their cytokine production profiles depending on local microenvironments. Moreover, we also found GM-CSF-positive cardiac fibroblasts in cardiac biopsy samples from heart failure patients of myocarditis or ischemic origin. Thus, this is the first identification of a pathological GM-CSF-producing cardiac fibroblast subset in human and mice hearts with myocarditis and ischemic cardiomyopathy. Sca-1+ cardiac fibroblasts direct the type of immune cells infiltrating the heart during cardiac inflammation and drive the development of heart failure.


Asunto(s)
Ataxina-1/genética , Fibroblastos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Insuficiencia Cardíaca/patología , Infarto del Miocardio/patología , Miocarditis/patología , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Quimiocina CCL2/biosíntesis , Humanos , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
9.
J Psychiatry Neurosci ; 44(4): 269-276, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30938127

RESUMEN

Background: Approximately one-third of people with schizophrenia have elevated levels of anti-gliadin antibodies of the immunoglobulin G type (AGA IgG) ­ a higher rate than seen in healthy controls. We performed the first double-blind clinical trial of gluten-free versus gluten-containing diets in a subset of patients with schizophrenia who were positive for AGA IgG. Methods: In this pilot feasibility study, 16 participants with schizophrenia or schizoaffective disorder who had elevated AGA IgG (≥ 20 U) but were negative for celiac disease were admitted to an inpatient unit for a 5-week trial. All participants received standardized gluten-free meals and were randomized in a double-blind fashion to receive a shake containing 10 g of gluten flour or 10 g of rice flour each day. Participants were rated for psychiatric, cognitive and gastrointestinal symptoms at baseline and endpoint. Results: Of the 16 participants, 14 completed the 5-week trial (2 discontinued early for administrative reasons). Compared with participants on the gluten-containing diet, participants on the gluten-free diet showed improvement on the Clinical Global Impressions scale (Cohen d = ­0.75) and in negative symptoms (Cohen d = ­0.53). We noted no improvement in positive or global cognitive symptoms, but did observe an improvement in attention favouring the gluten-free diet (Cohen d = 0.60). Robust improvements in gastrointestinal adverse effects occurred in the gluten-free group relative to the glutencontaining group. Adverse effects were similar between groups. Limitations: This study was limited by its small sample size; larger studies are needed. Conclusion: This feasibility study suggests that removal of gluten from the diet is associated with improvement in psychiatric and gastrointestinal symptoms in people with schizophrenia or schizoaffective disorder.


Asunto(s)
Gliadina/inmunología , Trastornos Psicóticos/dietoterapia , Trastornos Psicóticos/inmunología , Esquizofrenia/dietoterapia , Esquizofrenia/inmunología , Adulto , Anticuerpos/inmunología , Dieta Sin Gluten , Método Doble Ciego , Estudios de Factibilidad , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Proyectos Piloto
10.
Clin Immunol ; 175: 26-33, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27894980

RESUMEN

Despite of a multitude of excellent studies, the regulatory role of natural killer (NK) cells in the pathogenesis of inflammatory cardiac disease is greatly underappreciated. Clinical abnormalities in the numbers and functions of NK cells are observed in myocarditis and inflammatory dilated cardiomyopathy (DCMi) as well as in cardiac transplant rejection [1-6]. Because treatment of these disorders remains largely symptomatic in nature, patients have little options for targeted therapies [7,8]. However, blockade of NK cells and their receptors can protect against inflammation and damage in animal models of cardiac injury and inflammation. In these models, NK cells suppress the maturation and trafficking of inflammatory cells, alter the local cytokine and chemokine environments, and induce apoptosis in nearby resident and hematopoietic cells [1,9,10]. This review will dissect each protective mechanism employed by NK cells and explore how their properties might be exploited for their therapeutic potential.


Asunto(s)
Cardiopatías/inmunología , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Animales , Cardiomiopatía Dilatada/inmunología , Citocinas/inmunología , Corazón/fisiopatología , Humanos , Miocarditis/inmunología
11.
Eur J Immunol ; 46(3): 582-92, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26660726

RESUMEN

Using a mouse model of experimental autoimmune myocarditis (EAM), we showed for the first time that IL-23 stimulation of CD4(+) T cells is required only briefly at the initiation of GM-CFS-dependent cardiac autoimmunity. IL-23 signal, acting as a switch, turns on pathogenicity of CD4(+) T cells, and becomes dispensable once autoreactivity is established. Il23a(-/-) mice failed to mount an efficient Th17 response to immunization, and were protected from myocarditis. However, remarkably, transient IL-23 stimulation ex vivo fully restored pathogenicity in otherwise nonpathogenic CD4(+) T cells raised from Il23a(-/-) donors. Thus, IL-23 may no longer be necessary to uphold inflammation in established autoimmune diseases. In addition, we demonstrated that IL-23-induced GM-CSF mediates the pathogenicity of CD4(+) T cells in EAM. The neutralization of GM-CSF abrogated cardiac inflammation. However, sustained IL-23 signaling is required to maintain IL-17A production in CD4(+) T cells. Despite inducing inflammation in Il23a(-/-) recipients comparable to wild-type (WT), autoreactive CD4(+) T cells downregulated IL-17A production without persistent IL-23 signaling. This divergence on the controls of GM-CSF-dependent pathogenicity on one side and IL-17A production on the other side may contribute to the discrepant efficacies of anti-IL-23 therapy in different autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos T CD4-Positivos/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Interleucina-23/metabolismo , Miocarditis/inmunología , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Femenino , Interleucina-17/biosíntesis , Interleucina-17/genética , Interleucina-23/deficiencia , Interleucina-23/genética , Interleucina-23/farmacología , Ratones , Miocarditis/fisiopatología , Bazo/citología , Bazo/efectos de los fármacos , Bazo/metabolismo , Células Th17/inmunología
12.
Eur J Immunol ; 46(12): 2749-2760, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27621211

RESUMEN

Cardiac manifestations are a major cause of morbidity and mortality in patients with eosinophil-associated diseases. Eosinophils are thought to play a pathogenic role in myocarditis. We investigated the pathways that recruit eosinophils to the heart using a model of eosinophilic myocarditis, in which experimental autoimmune myocarditis (EAM) is induced in IFNγ-/- IL-17A-/- mice. Two conditions are necessary for efficient eosinophil trafficking to the heart: high eotaxin (CCL11, CCL24) expression in the heart and expression of the eotaxin receptor CCR3 by eosinophils. We identified cardiac fibroblasts as the source of CCL11 in the heart interstitium. CCL24 is produced by F4/80+ macrophages localized at inflammatory foci in the heart. Expression of CCL11 and CCL24 is controlled by Th2 cytokines, IL-4 and IL-13. To determine the relevance of this pathway in humans, we analyzed endomyocardial biopsy samples from myocarditis patients. Expression of CCL11 and CCL26 was significantly increased in eosinophilic myocarditis compared to chronic lymphocytic myocarditis and positively correlated with the number of eosinophils. Thus, eosinophil trafficking to the heart is dependent on the eotaxin-CCR3 pathway in a mouse model of EAM and associated with cardiac eotaxin expression in patients with eosinophilic myocarditis. Blocking this pathway may prevent eosinophil-mediated cardiac damage.


Asunto(s)
Quimiocina CCL11/metabolismo , Quimiocina CCL24/metabolismo , Eosinófilos/inmunología , Fibroblastos/inmunología , Macrófagos/inmunología , Miocarditis/inmunología , Miocardio/inmunología , Enfermedad Autoinmune Experimental del Sistema Nervioso/inmunología , Adulto , Anciano , Animales , Miosinas Cardíacas/inmunología , Movimiento Celular , Células Cultivadas , Femenino , Humanos , Interferón gamma/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Transgénicos , Miocardio/patología , Receptores CCR3/genética , Balance Th1 - Th2
13.
Am J Pathol ; 186(9): 2337-52, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27470712

RESUMEN

Infections with Staphylococcus aureus are a continuing and growing problem in community and hospital settings. Preclinical animal modeling of S. aureus relies on experimental infection, which carries some limitations. We describe here a novel, spontaneous model of oral staphylococcal infection in double knockout mice, deficient in the receptors for IL-17 (IL-17RA) and interferon (IFN)-γ (IFNγRI), beginning at 6 to 8 weeks of age. IFNγRI(-/-)IL17RA(-/-) (GRAKO) mice developed progressive oral abscesses. Cytometric methods revealed extensive neutrophilic infiltration of oral tissues in GRAKO mice; further investigation evidenced that IL-17 predominated neutrophil defects in these mice. To investigate the contribution of IFN-γ signaling to this native host defense to S. aureus, we observed perturbations of monocyte recruitment and macrophage differentiation in the oral tissues of GRAKO mice, and CXCL9/chemokine ligand receptor (CXCR)3-driven recruitment of T-cell oral tissues and draining lymph nodes. To address the former finding, we depleted macrophages and monocytes in vivo from IL17RA(-/-) mice using liposomes loaded with clodronate. This treatment elicited oral abscesses, recapitulating the phenotype of GRAKO mice. From these findings, we propose novel collaborative functions of IL-17 and IFN-γ, acting through neutrophils and macrophages, respectively, in native mucocutaneous host defenses to S. aureus.


Asunto(s)
Interferón gamma/inmunología , Interleucina-17/inmunología , Mucosa Bucal/inmunología , Mucosa Bucal/microbiología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Transducción de Señal/inmunología
14.
Exp Mol Pathol ; 103(2): 141-152, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28822770

RESUMEN

The extensive, diverse communities that constitute the microbiome are increasingly appreciated as important regulators of human health and disease through inflammatory, immune, and metabolic pathways. We sought to elucidate pathways by which microbiota contribute to inflammatory, autoimmune cardiac disease. We employed an animal model of experimental autoimmune myocarditis (EAM), which results in inflammatory and autoimmune pathophysiology and subsequent maladaptive cardiac remodeling and heart failure. Antibiotic dysbiosis protected mice from EAM and fibrotic cardiac dysfunction. Additionally, mice derived from different sources with different microbiome colonization profiles demonstrated variable susceptibility to disease. Unexpectedly, it did not track with segmented filamentous bacteria (SFB)-driven Th17 programming of CD4+ T cells in the steady-state gut. Instead, we found disease susceptibility to track with presence of type 3 innate lymphoid cells (ILC3s). Ablating ILCs by antibody depletion or genetic tools in adoptive transfer variants of the EAM model demonstrated that ILCs and microbiome profiles contributed to the induction of CCL20/CCR6-mediated inflammatory chemotaxis to the diseased heart. From these data, we conclude that sensing of the microbiome by ILCs is an important checkpoint in the development of inflammatory cardiac disease processes through their ability to elicit cardiotropic chemotaxis.


Asunto(s)
Antibacterianos/farmacología , Enfermedades Autoinmunes/inmunología , Corazón/fisiopatología , Linfocitos/inmunología , Microbiota , Miocarditis/inmunología , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/metabolismo , Modelos Animales de Enfermedad , Disbiosis/prevención & control , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Miocarditis/tratamiento farmacológico , Miocarditis/metabolismo
15.
Adv Exp Med Biol ; 1003: 187-221, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28667560

RESUMEN

Myocarditis is the inflammation of the muscle tissues of the heart (myocardium). After a pathologic cardiac-specific inflammatory process, it may progress to chronic damage and dilated cardiomyopathy. The latter is characterized by systolic dysfunction, whose clinical correlate is heart failure. Nevertheless, other acute complications may arise as consequence of tissue damage and electrophysiologic disturbances. Different etiologies are involved in triggering myocarditis. In some cases, such as giant cell myocarditis or eosinophilic necrotizing myocarditis, it is an autoimmune process. Several factors predispose the development of autoimmune myocarditis such as systemic/local primary autoimmunity, viral infection, HLA and gender bias, exposure of cryptic antigens, mimicry, and deficient thymic training/Treg induction. Once the anti-myocardium autoimmune process is triggered, several components of the immune response orchestrate a sustained attack toward myocardial tissues with particular timing and immunopathogenic features. Innate response mediated by monocytes/macrophages, neutrophils, and eosinophils parallels the adaptive response, playing a final effector role and not only a priming function. Stromal cells like fibroblast are also involved in the process through specific cytokines. Furthermore, adaptive T cell responses have anti-paradigmatic features, as Th17 response is dispensable for acute myocarditis but is the main driver of the process leading to dilated cardiomyopathy. Humoral response, thought to be a bystander, is important in the appearance of late-stage hemodynamic complications. The complexity of that process, as well as the unspecific and variable clinical presentation, had generated difficulties for diagnosis and treatment, which remain suboptimal. In this chapter, we will discuss the most relevant immunopathogenic findings from a basic science and clinical perspective.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Autoinmunidad , Miocarditis/inmunología , Miocardio/inmunología , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/patología , Autoinmunidad/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Inmunosupresores/uso terapéutico , Miocarditis/tratamiento farmacológico , Miocarditis/epidemiología , Miocarditis/patología , Miocardio/metabolismo , Miocardio/patología , Pronóstico , Factores de Riesgo , Transducción de Señal
16.
Mol Med ; 22: 136-146, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26772776

RESUMEN

Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell-mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation.

17.
Am J Pathol ; 185(3): 847-61, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25622543

RESUMEN

Myocarditis is a leading cause of sudden cardiac failure in young adults. Natural killer (NK) cells, a subset of the innate lymphoid cell compartment, are protective in viral myocarditis. Herein, we demonstrated that these protective qualities extend to suppressing autoimmune inflammation. Experimental autoimmune myocarditis (EAM) was initiated in BALB/c mice by immunization with myocarditogenic peptide. During EAM, activated cardiac NK cells secreted interferon γ, perforin, and granzyme B, and expressed CD69, tumor necrosis factor-related apoptosis-inducing ligand treatment, and CD27 on their cell surfaces. The depletion of NK cells during EAM with anti-asialo GM1 antibody significantly increased myocarditis severity, and was accompanied by elevated fibrosis and a 10-fold increase in the percentage of cardiac-infiltrating eosinophils. The resultant influx of eosinophils to the heart was directly responsible for the increased disease severity in the absence of NK cells, because treatment with polyclonal antibody asialogangloside GM-1 did not augment myocarditis severity in eosinophil-deficient ΔdoubleGATA1 mice. We demonstrate that NK cells limit eosinophilic infiltration both indirectly, through altering eosinophil-related chemokine production by cardiac fibroblasts, and directly, by inducing eosinophil apoptosis in vitro. Altogether, we define a new pathway of eosinophilic regulation through interactions with NK cells.


Asunto(s)
Eosinófilos/inmunología , Células Asesinas Naturales/inmunología , Miocarditis/inmunología , Miocardio/inmunología , Animales , Apoptosis/inmunología , Eosinófilos/patología , Fibrosis/inmunología , Fibrosis/patología , Inflamación/patología , Células Asesinas Naturales/patología , Ratones , Ratones Endogámicos BALB C , Miocarditis/patología , Miocardio/patología
18.
BMC Genomics ; 16: 333, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25898983

RESUMEN

BACKGROUND: Transcriptomic studies hold great potential towards understanding the human aging process. Previous transcriptomic studies have identified many genes with age-associated expression levels; however, small samples sizes and mixed cell types often make these results difficult to interpret. RESULTS: Using transcriptomic profiles in CD14+ monocytes from 1,264 participants of the Multi-Ethnic Study of Atherosclerosis (aged 55-94 years), we identified 2,704 genes differentially expressed with chronological age (false discovery rate, FDR ≤ 0.001). We further identified six networks of co-expressed genes that included prominent genes from three pathways: protein synthesis (particularly mitochondrial ribosomal genes), oxidative phosphorylation, and autophagy, with expression patterns suggesting these pathways decline with age. Expression of several chromatin remodeler and transcriptional modifier genes strongly correlated with expression of oxidative phosphorylation and ribosomal protein synthesis genes. 17% of genes with age-associated expression harbored CpG sites whose degree of methylation significantly mediated the relationship between age and gene expression (p < 0.05). Lastly, 15 genes with age-associated expression were also associated (FDR ≤ 0.01) with pulse pressure independent of chronological age. Comparing transcriptomic profiles of CD14+ monocytes to CD4+ T cells from a subset (n = 423) of the population, we identified 30 age-associated (FDR < 0.01) genes in common, while larger sets of differentially expressed genes were unique to either T cells (188 genes) or monocytes (383 genes). At the pathway level, a decline in ribosomal protein synthesis machinery gene expression with age was detectable in both cell types. CONCLUSIONS: An overall decline in expression of ribosomal protein synthesis genes with age was detected in CD14+ monocytes and CD4+ T cells, demonstrating that some patterns of aging are likely shared between different cell types. Our findings also support cell-specific effects of age on gene expression, illustrating the importance of using purified cell samples for future transcriptomic studies. Longitudinal work is required to establish the relationship between identified age-associated genes/pathways and aging-related diseases.


Asunto(s)
Envejecimiento/genética , Monocitos/metabolismo , Transcriptoma , Anciano , Anciano de 80 o más Años , Autofagia/genética , Islas de CpG/genética , Metilación de ADN/genética , Femenino , Humanos , Receptores de Lipopolisacáridos/metabolismo , Masculino , Persona de Mediana Edad , Monocitos/citología , Fosforilación Oxidativa , Biosíntesis de Proteínas/genética , Ribosomas/genética , Ribosomas/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
19.
Cytokine ; 74(1): 62-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25649043

RESUMEN

IL6 is a pleiotropic cytokine that is made in response to perturbations in homeostasis. IL6 becomes elevated in the acute response to host injury and can activate immune cells, direct immune cell trafficking, signal protective responses in local tissue, initial the acute phase response or initiate wound healing. In the short term this proinflammatory response is protective and limits host damage. It is when this acute response remains chronically activated that IL6 becomes pathogenic to the host. Chronically elevated IL6 levels lead to chronic inflammation and fibrotic disorders. The heart is a tissue where this temporal regulation of IL6 is very apparent. Studies from myocardial infarction show how short-term IL6 signaling can protect and preserve the heart tissue in response to acute damage, where long term IL6 signaling or an over-production of IL6R protein plays a causal role in cardiovascular disease. Thus, IL6 can be both protective and pathogenic, depending on the kinetics of the host response.


Asunto(s)
Cardiopatías/inmunología , Cardiopatías/metabolismo , Insuficiencia Cardíaca/inmunología , Insuficiencia Cardíaca/metabolismo , Interleucina-6/metabolismo , Miocardio/metabolismo , Animales , Receptor gp130 de Citocinas/inmunología , Receptor gp130 de Citocinas/metabolismo , Humanos , Inflamación/inmunología , Interleucina-6/biosíntesis , Infarto del Miocardio/etiología , Infarto del Miocardio/inmunología , Miocarditis/inmunología , Miocardio/inmunología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Receptores de Interleucina-6/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA