Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurooncol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918319

RESUMEN

PURPOSE: To report the outcomes of a large series of intracranial meningiomas (IMs) submitted to proton therapy (PT) with curative intent. METHODS: We conducted a retrospective analysis on all consecutive IM patients treated between 2014 and 2021. The median PT prescription dose was 55.8 Gy relative biological effectiveness (RBE) and 66 GyRBE for benign/radiologically diagnosed and atypical/anaplastic IMs, respectively. Local recurrence-free survival (LRFS), distant recurrence-free survival (DRFS), overall survival (OS), and radionecrosis-free survival (RNFS) were evaluated with the Kaplan-Meier method. Univariable analysis was performed to identify potential prognostic factors for clinical outcomes. Toxicity was reported according to the latest Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. RESULTS: Overall, 167 patients were included. With a median follow-up of 41 months (range, 6-99), twelve patients (7%) developed tumor local recurrence after a median time of 39 months. The 5-year LRFS was 88% for the entire cohort, with a significant difference between benign/radiologically diagnosed and atypical/anaplastic IMs (98% vs. 47%, p < 0.001); this significant difference was maintained also for the 5-year OS and the 5-year DRFS rates. Patients aged ≤ 56 years reported significantly better outcomes, whereas lower prescription doses and skull base location were associated with better RNFS rates. Two patients experienced G3 acute toxicities (1.2%), and three patients G3 late toxicities (1.8%). There were no G4-G5 adverse events. CONCLUSION: PT proved to be effective with an acceptable toxicity profile. To the best of our knowledge this is one of the largest series including IM patients submitted to PT.

2.
Radiol Med ; 127(9): 1046-1058, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35871428

RESUMEN

The number of oncological patients who may benefit from proton beam radiotherapy (PBT) or carbon ion radiotherapy (CIRT), overall referred to as particle radiotherapy (RT), is expected to strongly increase in the next future, as well as the number of cardiological patients requiring cardiac implantable electronic devices (CIEDs). The management of patients with a CIED requiring particle RT deserves peculiar attention compared to those undergoing conventional photon beam RT, mostly due to the potential generation of secondary neutrons by particle beams interactions. Current consensus documents recommend managing these patients as being at intermediate/high risk of RT-induced device malfunctioning regardless of the dose on the CIED and the beam delivery method used, despite the last one significantly affects secondary neutrons generation (very limited neutrons production with active scanning as opposed to the passive scattering technique). The key issues for the current review were expressed in four questions according to the Population, Intervention, Control, Outcome criteria. Three in vitro and five in vivo studies were included. Based on the available data, PBT and CIRT with active scanning have a limited potential to interfere with CIED that has only emerged from in vitro study so far, while a significant potential for neutron-related, not severe, CIED malfunctions (resets) was consistently reported in both clinical and in vitro studies with passive scattering.


Asunto(s)
Desfibriladores Implantables , Marcapaso Artificial , Electrónica , Humanos , Protones , Estudios Retrospectivos
3.
Curr Pain Headache Rep ; 25(4): 24, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33738547

RESUMEN

PURPOSE OF THE REVIEW: Concussion evaluation and management has changed significantly. Understanding proper recognition, evaluation, and management allows for improved provision of care to patients. This paper will approach this topic from a sideline to training room management versus the traditional clinic evaluation RECENT FINDINGS: Research is continuing to refine and examine tools to assist in proper concussion evaluation. Concussion recovery protocols are becoming more conservative as patients are taking longer to recover than previously thought. Treatment of concussion is becoming more sophisticated and patient involved. Concussion research has increased dramatically over the last 30 years changing our approach to diagnosis and treatment. The area of concussion will continue to evolve as research continues to look at effective tools and markers for diagnosis and effective treatment protocols become substantiated through research.


Asunto(s)
Traumatismos en Atletas/diagnóstico , Traumatismos en Atletas/terapia , Conmoción Encefálica/diagnóstico , Conmoción Encefálica/terapia , Manejo de la Enfermedad , Humanos
4.
Sensors (Basel) ; 21(13)2021 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-34199068

RESUMEN

Eye tracking techniques based on deep learning are rapidly spreading in a wide variety of application fields. With this study, we want to exploit the potentiality of eye tracking techniques in ocular proton therapy (OPT) applications. We implemented a fully automatic approach based on two-stage convolutional neural networks (CNNs): the first stage roughly identifies the eye position and the second one performs a fine iris and pupil detection. We selected 707 video frames recorded during clinical operations during OPT treatments performed at our institute. 650 frames were used for training and 57 for a blind test. The estimations of iris and pupil were evaluated against the manual labelled contours delineated by a clinical operator. For iris and pupil predictions, Dice coefficient (median = 0.94 and 0.97), Szymkiewicz-Simpson coefficient (median = 0.97 and 0.98), Intersection over Union coefficient (median = 0.88 and 0.94) and Hausdorff distance (median = 11.6 and 5.0 (pixels)) were quantified. Iris and pupil regions were found to be comparable to the manually labelled ground truths. Our proposed framework could provide an automatic approach to quantitatively evaluating pupil and iris misalignments, and it could be used as an additional support tool for clinical activity, without impacting in any way with the consolidated routine.


Asunto(s)
Terapia de Protones , Procesamiento de Imagen Asistido por Computador , Iris , Redes Neurales de la Computación , Pupila
5.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708312

RESUMEN

Glioblastoma multiforme (GBM) is a malignant primary brain tumor with very poor prognosis, high recurrence rate, and failure of chemo-radiotherapy, mainly due to a small fraction of cells with stem-like properties (GSCs). To study the mechanisms of GSCs resistance to radiation, two GSC lines, named line #1 and line #83, with different metabolic patterns and clinical outcome, were irradiated with photon beams and carbon ions and assessed by 1H Magnetic Resonance Spectroscopy (MRS). Both irradiation modalities induced early cytotoxic effects in line #1 with small effects on cell cycle, whereas a proliferative G2/M cytostatic block was observed in line #83. MR spectroscopy signals from mobile lipids (ML) increased in spectra of line #1 after photon and C-ion irradiation with effects on lipid unsaturation level, whereas no effects were detected in line #83 spectra. Gamma-Aminobutyric Acid (GABA), glutamic acid (glu) and Phosphocreatine (pCr) signals showed a significant variation only for line #1 after carbon ion irradiation. Glucose (glc) level and lactate (Lac) extrusion behaved differently in the two lines. Our findings suggest that the differences in irradiation response of GSCs #1 and #83 lines are likely attributable to their different metabolic fingerprint rather than to the different radiation types.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Glioblastoma/metabolismo , Espectroscopía de Resonancia Magnética , Células Madre Neoplásicas/metabolismo , Fotones/uso terapéutico , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Glioblastoma/radioterapia , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Humanos , Iones/metabolismo , Ácido Láctico/metabolismo , Células Madre Neoplásicas/efectos de la radiación , Fosfocreatina/metabolismo , Radiación Ionizante , Ácido gamma-Aminobutírico/metabolismo
6.
J Appl Clin Med Phys ; 17(5): 60-75, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27685119

RESUMEN

Particle therapy (PT) has shown positive therapeutic results in local control of locally advanced pancreatic lesions. PT effectiveness is highly influenced by target localization accuracy both in space, since the pancreas is located in proximity to radiosensitive vital organs, and in time as it is subject to substantial breathing-related motion. The purpose of this preliminary study was to quantify pancreas range of motion under typical PT treatment conditions. Three common immobilization devices (vacuum cushion, thermoplastic mask, and compressor belt) were evaluated on five male patients in prone and supine positions. Retrospective four-dimensional magnetic resonance imaging data were reconstructed for each condition and the pancreas was manually segmented on each of six breathing phases. A k-means algorithm was then applied on the manually segmented map in order to obtain clusters representative of the three pancreas segments: head, body, and tail. Centers of mass (COM) for the pancreas and its segments were computed, as well as their displacements with respect to a reference breathing phase (beginning exhalation). The median three-dimensional COM displacements were in the range of 3 mm. Latero-lateral and superior-inferior directions had a higher range of motion than the anterior-posterior direction. Motion analysis of the pancreas segments showed slightly lower COM displacements for the head cluster compared to the tail cluster, especially in prone position. Statistically significant differences were found within patients among the investigated setups. Hence a patient-specific approach, rather than a general strategy, is suggested to define the optimal treatment setup in the frame of a millimeter positioning accuracy.


Asunto(s)
Inmovilización/instrumentación , Imagen por Resonancia Magnética/métodos , Neoplasias Pancreáticas/radioterapia , Posicionamiento del Paciente , Errores de Configuración en Radioterapia/prevención & control , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Respiración , Estudios Retrospectivos
7.
J Electrocardiol ; 48(5): 896-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26271889

RESUMEN

IMPORTANCE: Rapidly detecting dangerous arrhythmias in a symptomatic athlete continues to be an elusive goal. The use of handheld smartphone electrocardiogram (ECG) monitors could represent a helpful tool connecting the athletic trainer to the cardiologist. OBSERVATIONS: Six college athletes presented to their athletic trainers complaining of palpitations during exercise. A single lead ECG was performed using the AliveCor Heart Monitor and sent wirelessly to the Team Cardiologist who confirmed an absence of dangerous arrhythmia. CONCLUSIONS AND RELEVANCE: AliveCor monitoring has the potential to enhance evaluation of symptomatic athletes by allowing trainers and team physicians to make diagnosis in real-time and facilitate faster return to play.


Asunto(s)
Arritmias Cardíacas/diagnóstico , Atletas , Electrocardiografía Ambulatoria/instrumentación , Electrocardiografía Ambulatoria/métodos , Aplicaciones Móviles , Teléfono Inteligente , Adolescente , Sistemas de Computación , Diagnóstico por Computador/instrumentación , Diagnóstico por Computador/métodos , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estudiantes , Universidades , Interfaz Usuario-Computador , Adulto Joven
8.
J Appl Clin Med Phys ; 16(2): 5227, 2015 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103195

RESUMEN

The Italian National Center for Hadrontherapy (CNAO, Centro Nazionale di Adroterapia Oncologica), a synchrotron-based hospital facility, started the treatment of patients within selected clinical trials in late 2011 and 2012 with actively scanned proton and carbon ion beams, respectively. The activation of a new clinical protocol for the irradiation of uveal melanoma using the existing general-purpose proton beamline is foreseen for late 2014. Beam characteristics and patient treatment setup need to be tuned to meet the specific requirements for such a type of treatment technique. The aim of this study is to optimize the CNAO transport beamline by adding passive components and minimizing air gap to achieve the optimal conditions for ocular tumor irradiation. The CNAO setup with the active and passive components along the transport beamline, as well as a human eye-modeled detector also including a realistic target volume, were simulated using the Monte Carlo Geant4 toolkit. The strong reduction of the air gap between the nozzle and patient skin, as well as the insertion of a range shifter plus a patient-specific brass collimator at a short distance from the eye, were found to be effective tools to be implemented. In perspective, this simulation toolkit could also be used as a benchmark for future developments and testing purposes on commercial treatment planning systems.


Asunto(s)
Simulación por Computador , Neoplasias del Ojo/radioterapia , Melanoma/radioterapia , Terapia de Protones , Planificación de la Radioterapia Asistida por Computador/normas , Sincrotrones/instrumentación , Sincrotrones/normas , Neoplasias de la Úvea/radioterapia , Humanos , Método de Montecarlo , Fantasmas de Imagen , Planificación de la Radioterapia Asistida por Computador/métodos
9.
J Electrocardiol ; 47(1): 1-6, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24094810

RESUMEN

BACKGROUND: Displacement of ECG leads can result in unwarranted findings. We assessed the frequency of Brugada-type patterns in athletes when precordial leads were purposely placed upward. METHODS: Four hundred ninety-one collegiate athletes underwent two ECGs: one with standard leads, one with V1 and V2 along the 2nd intercostal space. A positive Brugada-type pattern was defined as ST elevation in V1 or V2 consistent with a Type 1, 2, or 3 pattern in the high-lead ECG. A control group was comprised of 181 outpatients. RESULTS: No Type 1 patterns were seen. In 58 athletes (11.8%), a Brugada-type 2 or 3 pattern was observed. Those with Brugada-type 2 or 3 patterns were more likely male, taller, and heavier. In the control group, 18 (9.9%) had Brugada-type 2 or 3 patterns and were more likely male. CONCLUSIONS: Proper lead positioning is essential to avoid unwarranted diagnosis of a Brugada-type ECG, especially in taller, heavier male athletes.


Asunto(s)
Síndrome de Brugada/diagnóstico , Electrocardiografía/instrumentación , Electrocardiografía/estadística & datos numéricos , Electrodos/estadística & datos numéricos , Deportes/estadística & datos numéricos , Adulto , Artefactos , Reacciones Falso Positivas , Femenino , Humanos , Masculino , North Carolina , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores Sexuales , Universidades/estadística & datos numéricos
10.
Radiol Med ; 119(4): 277-82, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24337759

RESUMEN

PURPOSE: The Italian National Centre for Oncological Hadrontherapy (Centro Nazionale di Adroterapia Oncologica, CNAO), equipped with a proton and ion synchrotron, started clinical activity in September 2011. The clinical and technical characteristics of the first ten proton beam radiotherapy treatments are reported. MATERIALS AND METHODS: Ten patients, six males and four females (age range 27-73 years, median 55.5), were treated with proton beam radiotherapy. After one to two surgical procedures, seven patients received a histological diagnosis of chordoma (of the skull base in three cases, the cervical spine in one case and the sacrum in three cases) and three of low-grade chondrosarcoma (skull base). Prescribed doses were 74 GyE for chordoma and 70 GyE for chondrosarcoma at 2 GyE/fraction delivered 5 days per week. RESULTS: Treatment was well tolerated without toxicity-related interruptions. The maximal acute toxicity was grade 2, with oropharyngeal mucositis, nausea and vomiting for the skull base tumours, and grade 2 dermatitis for the sacral tumours. After 6-12 months of follow-up, no patient developed tumour progression. CONCLUSIONS: The analysis of the first ten patients treated with proton therapy at CNAO showed that this treatment was feasible and safe. Currently, patient accrual into these as well as other approved protocols is continuing, and a longer follow-up period is needed to assess tumour control and late toxicity.


Asunto(s)
Condrosarcoma/radioterapia , Cordoma/radioterapia , Neoplasias de la Base del Cráneo/radioterapia , Neoplasias de la Columna Vertebral/radioterapia , Adulto , Anciano , Fraccionamiento de la Dosis de Radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Italia , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Protones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Asistida por Computador , Sincrotrones , Tomografía Computarizada por Rayos X
11.
Phys Med ; 124: 103421, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968695

RESUMEN

PURPOSE: To investigate the role of dosiomics features extracted from physical dose (DPHYS), RBE-weighted dose (DRBE) and dose-averaged Linear Energy Transfer (LETd), to predict the risk of local recurrence (LR) in skull base chordoma (SBC) treated with Carbon Ion Radiotherapy (CIRT). Thus, define and evaluate dosiomics-driven tumor control probability (TCP) models. MATERIALS AND METHODS: 54 SBC patients were retrospectively selected for this study. A regularized Cox proportional hazard model (r-Cox) and Survival Support Vector Machine (s-SVM) were tuned within a repeated Cross Validation (CV) and patients were stratified in low/high risk of LR. Models' performance was evaluated through Harrell's concordance statistic (C-index), and survival was represented through Kaplan-Meier (KM) curves. A multivariable logistic regression was fit to the selected feature sets to generate a dosiomics-driven TCP model for each map. These were compared to a reference model built with clinical parameters in terms of f-score and accuracy. RESULTS: The LETd maps reached a test C-index of 0.750 and 0.786 with r-Cox and s-SVM, and significantly separated KM curves. DPHYS maps and clinical parameters showed promising CV outcomes with C-index above 0.8, despite a poorer performance on the test set and patients stratification. The LETd-based TCP showed a significatively higher f-score (0.67[0.52-0.70], median[IQR]) compared to the clinical model (0.4[0.32-0.63], p < 0.025), while DPHYS achieved a significatively higher accuracy (DPHYS: 0.73[0.65-0.79], Clinical: 0.6 [0.52-0.72]). CONCLUSION: This analysis supports the role of LETd as relevant source of prognostic factors for LR in SBC treated with CIRT. This is reflected in the TCP modeling, where LETd and DPHYS showed an improved performance with respect to clinical models.

12.
Sci Rep ; 14(1): 418, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172585

RESUMEN

Boron Neutron Capture Therapy (BNCT) is a radiotherapy technique based on the enrichment of tumour cells with suitable 10-boron concentration and on subsequent neutron irradiation. Low-energy neutron irradiation produces a localized deposition of radiation dose caused by boron neutron capture reactions. Boron is vehiculated into tumour cells via proper borated formulations, able to accumulate in the malignancy more than in normal tissues. The neutron capture releases two high-LET charged particles (i.e., an alpha particle and a lithium ion), losing their energy in a distance comparable to the average dimension of one cell. Thus BNCT is selective at the cell level and characterized by high biological effectiveness. As the radiation field is due to the interaction of neutrons with the components of biological tissues and with boron, the dosimetry requires a formalism to express the absorbed dose into photon-equivalent units. This work analyzes a clinical case of an adenoid cystic carcinoma treated with carbon-ion radiotherapy (CIRT), located close to optic nerve and deep-seated as a practical example of how to apply the formalism of BNCT photon isoeffective dose and how to evaluate the BNCT dose distribution against CIRT. The example allows presenting different dosimetrical and radiobiological quantities and drawing conclusions on the potential of BNCT stemming on the clinical result of the CIRT. The patient received CIRT with a dose constraint on the optic nerve, affecting the peripheral part of the Planning Target Volume (PTV). After the treatment, the tumour recurred in this low-dose region. BNCT was simulated for the primary tumour, with the goal to calculate the dose distribution in isoeffective units and a Tumour Control Probability (TCP) to be compared with the one of the original treatment. BNCT was then evaluated for the recurrence in the underdosed region which was not optimally covered by charged particles due to the proximity of the optic nerve. Finally, a combined treatment consisting in BNCT and carbon ion therapy was considered to show the consistency and the potential of the model. For the primary tumour, the photon isoeffective dose distribution due to BNCT was evaluated and the resulted TCP was higher than that obtained for the CIRT. The formalism produced values that are consistent with those of carbon-ion. For the recurrence, BNCT dosimetry produces a similar TCP than that of primary tumour. A combined treatment was finally simulated, showing a TCP comparable to the BNCT-alone with overall dosimetric advantage in the most peripheral parts of the treatment volume. Isoeffective dose formalism is a robust tool to analyze BNCT dosimetry and to compare it with the photon-equivalent dose calculated for carbon-ion treatment. This study introduces for the first time the possibility to combine the dosimetry obtained by two different treatment modalities, showing the potential of exploiting the cellular targeting of BNCT combined with the precision of charged particles in delivering an homogeneous dose distribution in deep-seated tumours.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias de Cabeza y Cuello , Radioterapia de Iones Pesados , Humanos , Terapia por Captura de Neutrón de Boro/métodos , Boro , Carbono , Neutrones
13.
Phys Med Biol ; 69(11)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38663410

RESUMEN

Objective. This study characterized optically-stimulated luminescent dosimeter (OSLD) nanoDots for use in a therapeutic carbon beam using the Imaging and Radiation Oncology Core (IROC) framework for remote output verification.Approach. The absorbed dose correction factors for OSLD (fading, linearity, beam quality, angularity, and depletion), as defined by AAPM TG 191, were characterized for carbon beams. For the various correction factors, the effect of linear energy transfer (LET) was examined by characterizing in both a low and high LET setting.Main results. Fading was not statistically different between reference photons and carbon, nor between low and high LET beams; thus, the standard IROC-defined exponential function could be used to characterize fading. Dose linearity was characterized with a linear fit; while low and high LET carbon linearity was different, these differences were small and could be rolled into the uncertainty budget if using a single linearity correction. A linear fit between beam quality and dose-averaged LET was determined. The OSLD response at various angles of incidence was not statistically different, thus a correction factor need not be applied. There was a difference in depletion between low and high LET irradiations in a primary carbon beam, but this difference was small over the standard five readings. The largest uncertainty associated with the use of OSLDs in carbon was because of thekQcorrection factor, with an uncertainty of 6.0%. The overall uncertainty budget was 6.3% for standard irradiation conditions.Significance. OSLD nanoDot response was characterized in a therapeutic carbon beam. The uncertainty was larger than for traditional photon applications. These findings enable the use of OSLDs for carbon absorbed dose measurements, but with less accuracy than conventional OSLD audit programs.


Asunto(s)
Carbono , Carbono/química , Carbono/uso terapéutico , Radiometría/métodos , Transferencia Lineal de Energía , Incertidumbre , Dosimetría con Luminiscencia Ópticamente Estimulada/métodos , Dosificación Radioterapéutica , Humanos
14.
Med Phys ; 51(7): 5154-5158, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38598230

RESUMEN

PURPOSE: As carbon ion radiotherapy increases in use, there are limited phantom materials for heterogeneous or anthropomorphic phantom measurements. This work characterized the radiological clinical equivalence of several phantom materials in a therapeutic carbon ion beam. METHODS: Eight materials were tested for radiological material-equivalence in a carbon ion beam. The materials were computed tomography (CT)-scanned to obtain Hounsfield unit (HU) values, then irradiated in a monoenergetic carbon ion beam to determine relative linear stopping power (RLSP). The corresponding HU and RLSP for each phantom material were compared to clinical carbon ion calibration curves. For absorbed dose comparison, ion chamber measurements were made in the center of a carbon ion spread-out Bragg peak (SOBP) in water and in the phantom material, evaluating whether the material perturbed the absorbed dose measurement beyond what was predicted by the HU-RLSP relationship. RESULTS: Polyethylene, solid water (Gammex and Sun Nuclear), Blue Water (Standard Imaging), and Techtron HPV had measured RLSP values that agreed within ±4.2% of RLSP values predicted by the clinical calibration curve. Measured RLSP for acrylic was 7.2% different from predicted. The agreement for balsa wood and cork varied between samples. Ion chamber measurements in the phantom materials were within 0.1% of ion chamber measurements in water for most materials (solid water, Blue Water, polyethylene, and acrylic), and within 1.9% for the rest of the materials (balsa wood, cork, and Techtron HPV). CONCLUSIONS: Several phantom materials (Blue Water, polyethylene, solid water [Gammex and Sun Nuclear], and Techtron HPV) are suitable for heterogeneous phantom measurements for carbon ion therapy. Low density materials should be carefully characterized due to inconsistencies between samples.


Asunto(s)
Radioterapia de Iones Pesados , Fantasmas de Imagen , Radioterapia de Iones Pesados/instrumentación , Calibración , Tomografía Computarizada por Rayos X , Humanos
15.
Int J Part Ther ; 12: 100100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39022120

RESUMEN

Purpose: The aim of this study is to determine the most beneficial radiation treatment technique for pediatric patients with thoracic and abdominal neuroblastoma (NBL), through a dosimetric comparison between photon Volumetric Modulated Arc Therapy and proton Intensity-Modulated Proton Therapy treatment plans. Materials and Methods: A retrospective analysis was conducted on a multicentre case series of 19 patients with thoracic and/or abdominal NBL who underwent radiation therapy, following the recommendations of the European protocol for high-risk NBL (HR-NBL2/SIOPEN). The prescribed dose was 21.6 Gy in 12 fractions (1.8 Gy/fraction) delivered over the preoperative disease volume. The dose volume histograms were analyzed for each patient, and a Wilcoxon signed-rank test with a significance level of 0.01 was employed to assess statistical differences between the dosimetric parameters investigated. Two homogeneity indices (HI and newHI) were compared to evaluate the uniformity in dose, delivered to the adjacent vertebrae (VBs_Adj). Results: Both radiation techniques conform to the protocol regarding CTV/PTV coverage for every location. Proton therapy resulted in statistically significant dose sparing for the heart and lungs in supradiaphragmatic locations and for the contralateral kidney, liver, spleen, and bowel in subdiaphragmatic locations. For both techniques, sparing the non-adjacent vertebrae (VBs_NAdj) results more challenging, although promising results were obtained. Furthermore, the dose delivered to the VBs_Adj was not statistically different, in terms of homogeneity, for the 2 radiation techniques that both met the protocol's requirements. Conclusion: This dosimetric analysis highlights the potential of protons to reduce radiation dose to healthy tissue. These findings apply to all the investigated patients, regardless of primary tumor location, making proton therapy a valuable option for the treatment of neuroblastoma. However, a multidisciplinary assessment of each case is essential to ensure the selection of the most effective and suitable treatment modality.

16.
Phys Imaging Radiat Oncol ; 29: 100553, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38419802

RESUMEN

Background and Purpose: Nuclear interaction correction (NIC) and trichrome fragment spectra modelling improve relative biological effectiveness-weighted dose (DRBE) and dose-averaged linear energy transfer (LETd) calculation for carbon ions. The effect of those novel approaches on the clinical dose and LET distributions was investigated. Materials and Methods: The effect of the NIC and trichrome algorithm was assessed, creating single beam plans for a virtual water phantom with standard settings and NIC + trichrome corrections. Reference DRBE and LETd distributions were simulated using FLUKA version 2021.2.9. Thirty clinically applied scanned carbon ion treatment plans were recalculated applying NIC, trichrome and NIC + trichrome corrections, using the LEM low dose approximation and compared to clinical plans (base RS). Four treatment sites were analysed: six prostate adenocarcinoma, ten head and neck, nine locally advanced pancreatic adenocarcinoma and five sacral chordoma. The FLUKA and clinical plans were compared in terms of DRBE deviations for D98%, D50%, D2% for the clinical target volume (CTV) and D50% in ring-like dose regions retrieved from isodose curves in base RS plans. Additionally, region-based median LETd deviations and global gamma parameters were evaluated. Results: Dose deviations comparing base RS and evaluation plans were within ± 1% supported by γ-pass rates over 97% for all cases. No significant LETd deviations were reported in the CTV, but significant median LETd deviations were up to 80% for very low dose regions. Conclusion: Our results showed improved accuracy of the predicted DRBE and LETd. Considering clinically relevant constraints, no significant modifications of clinical protocols are expected with the introduction of NIC + trichrome.

17.
Phys Med ; 120: 103329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492331

RESUMEN

GOAL: In-beam Positron Emission Tomography (PET) is a technique for in-vivo non-invasive treatment monitoring for proton therapy. To detect anatomical changes in patients with PET, various analysis methods exist, but their clinical interpretation is problematic. The goal of this work is to investigate whether the gamma-index analysis, widely used for dose comparisons, is an appropriate tool for comparing in-beam PET distributions. Focusing on a head-and-neck patient, we investigate whether the gamma-index map and the passing rate are sensitive to progressive anatomical changes. METHODS/MATERIALS: We simulated a treatment course of a proton therapy patient using FLUKA Monte Carlo simulations. Gradual emptying of the sinonasal cavity was modeled through a series of artificially modified CT scans. The in-beam PET activity distributions from three fields were evaluated, simulating a planar dual head geometry. We applied the 3D-gamma evaluation method to compare the PET images with a reference image without changes. Various tolerance criteria and parameters were tested, and results were compared to the CT-scans. RESULTS: Based on 210 MC simulations we identified appropriate parameters for the gamma-index analysis. Tolerance values of 3 mm/3% and 2 mm/2% were suited for comparison of simulated in-beam PET distributions. The gamma passing rate decreased with increasing volume change for all fields. CONCLUSION: The gamma-index analysis was found to be a useful tool for comparing simulated in-beam PET images, sensitive to sinonasal cavity emptying. Monitoring the gamma passing rate behavior over the treatment course is useful to detect anatomical changes occurring during the treatment course.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Método de Montecarlo , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Etopósido , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
18.
Phys Med Biol ; 69(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38373343

RESUMEN

Objective.This study addresses a fundamental limitation of in-beam positron emission tomography (IB-PET) in proton therapy: the lack of direct anatomical representation in the images it produces. We aim to overcome this shortcoming by pioneering the application of deep learning techniques to create synthetic control CT images (sCT) from combining IB-PET and planning CT scan data.Approach.We conducted simulations involving six patients who underwent irradiation with proton beams. Leveraging the architecture of a visual transformer (ViT) neural network, we developed a model to generate sCT images of these patients using the planning CT scans and the inter-fractional simulated PET activity maps during irradiation. To evaluate the model's performance, a comparison was conducted between the sCT images produced by the ViT model and the authentic control CT images-serving as the benchmark.Main results.The structural similarity index was computed at a mean value across all patients of 0.91, while the mean absolute error measured 22 Hounsfield Units (HU). Root mean squared error and peak signal-to-noise ratio values were 56 HU and 30 dB, respectively. The Dice similarity coefficient exhibited a value of 0.98. These values are comparable to or exceed those found in the literature. More than 70% of the synthetic morphological changes were found to be geometrically compatible with the ones reported in the real control CT scan.Significance.Our study presents an innovative approach to surface the hidden anatomical information of IB-PET in proton therapy. Our ViT-based model successfully generates sCT images from inter-fractional PET data and planning CT scans. Our model's performance stands on par with existing models relying on input from cone beam CT or magnetic resonance imaging, which contain more anatomical information than activity maps.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Terapia de Protones , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Terapia de Protones/métodos , Tomografía Computarizada por Rayos X/métodos , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Planificación de la Radioterapia Asistida por Computador/métodos
19.
J Appl Clin Med Phys ; 14(4): 4087, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23835375

RESUMEN

The purpose of this work was to evaluate the intrapatient tumor position reproducibility in a deep inspiration breath-hold (DIBH) technique based on two infrared optical tracking systems, ExacTrac and ELITETM, in stereotactic treatment of lung and liver lesions. After a feasibility study, the technique was applied to 15 patients. Each patient, provided with a real-time visual feedback of external optical marker displacements, underwent a full DIBH, a free-breathing (FB), and three consecutive DIBH CT-scans centered on the lesion to evaluate the tumor position reproducibility. The mean reproducibility of tumor position during repeated DIBH was 0.5 ± 0.3 mm in laterolateral (LL), 1.0 ± 0.9 mm in anteroposterior (AP), and 1.4 ± 0.9 mm in craniocaudal (CC) direction for lung lesions, and 1.0 ± 0.6 mm in LL, 1.1 ± 0.5 mm in AP, and 1.2 ± 0.4 mm in CC direction for liver lesions. Intra- and interbreath-hold reproducibility during treatment, as determined by optical markers displacements, was below 1 mm and 3 mm, respectively, in all directions for all patients. Optically-guided DIBH technique provides a simple noninvasive method to minimize breathing motion for collaborative patients. For each patient, it is important to ensure that the tumor position is reproducible with respect to the external markers configuration.


Asunto(s)
Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Radioterapia Conformacional/métodos , Adulto , Anciano , Contencion de la Respiración , Sistemas de Computación , Retroalimentación Sensorial , Femenino , Humanos , Rayos Infrarrojos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Movimiento , Dispositivos Ópticos , Posicionamiento del Paciente/instrumentación , Posicionamiento del Paciente/métodos , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados , Respiración , Tomografía Computarizada por Rayos X
20.
Phys Med ; 107: 102561, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36898300

RESUMEN

PURPOSE: To fully characterize the flat panel detector of the new Sphinx Compact device with scanned proton and carbon ion beams. MATERIALS AND METHODS: The Sphinx Compact is designed for daily QA in particle therapy. We tested its repeatability and dose rate dependence as well as its proportionality with an increasing number of particles and potential quenching effect. Potential radiation damage was evaluated. Finally, we compared the spot characterization (position and profile FWHM) with our radiochromic EBT3 film baseline. RESULTS: The detector showed a repeatability of 1.7% and 0.9% for single spots of protons and carbon ions, respectively, while for small scanned fields it was inferior to 0.2% for both particles. The response was independent from the dose rate (difference from nominal value < 1.5%). We observed an under-response due to quenching effect for both particles, mostly for carbon ions. No radiation damage effects were observed after two months of weekly use and approximately 1350 Gy delivered to the detector. Good agreement was found between the Sphinx and EBT3 films for the spot position (central-axis deviation within 1 mm). The spot size measured with the Sphinx was larger compared to films. For protons, the average and maximum differences over different energies were 0.4 mm (3%) and 1 mm (7%); for carbon ions they were 0.2 mm (4%) and 0.4 mm (6%). CONCLUSIONS: Despite the quenching effect the Sphinx Compact fulfills the requirements needed for constancy checks and could represent a time-saving tool for daily QA in scanned particle beams.


Asunto(s)
Terapia de Protones , Protones , Radiometría , Carbono , Dosimetría por Película
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA