RESUMEN
Skin wounds, due to their high vulnerability to infections, represent a significant public health issue. These wounds are not only disabling but also entail costly treatments and slow recovery. Consequently, it is crucial to implement new treatments based on bioactive and natural antimicrobial compounds utilizing fibers, polymers, hydrocolloids, and hydrogels to control potential infections and promote wound healing. This study aimed to develop a biocomposite with antimicrobial activity for the treatment of skin wounds, using sodium alginate, bamboo fiber, and a natural antimicrobial as ingredients. The physico-mechanical properties (Young's modulus, tensile strength, elongation at break, moisture absorption, and water vapor permeability) and antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus hominis were determined. The results demonstrated that the designed biocomposite possesses adequate physico-mechanical properties, such as flexibility, strength, and water absorption capacity, in addition to exhibiting antibacterial activity, making it suitable to be used as a dressing in wound treatment.
RESUMEN
Nowadays, solving the problems associated with environmental pollution is of special interest. Therefore, in this work, the morphology and thermal and mechanical properties of extruded fibers based on polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) added to prickly pear flour (PPF) under composting for 3 and 6 months were evaluated. The highest weight loss percentage (92 ± 7%) was obtained after 6-month degradation of the PLA/PBAT/PPF/CO/AA blend, in which PPF, canola oil (CO), and adipic acid (AA) were added. Optical and scanning electron microscopy (SEM) revealed structural changes in the fibers as composting time increased. The main changes in the absorption bands observed by Fourier transform infrared spectroscopy (FTIR) were related to the decrease in -C=O (1740 cm-1) and -C-O (1100 cm-1) groups and at 1269 cm-1, associated with hemicellulose in the blends with PPF. Differential scanning calorimetry (DSC) showed an increase in the cold crystallization and melting point with degradation time, being more evident in the fibers with PPF, as well as a decrease in the mechanical properties, especially Young's modulus. The obtained results suggest that PPF residues could promote the biodegradability of PLA/PBAT-based fiber composites.
RESUMEN
In order to provide a second economic life to agave fibers, an important waste material from the production of tequila, filaments based on polylactic acid (PLA) were filled with agave fibers (0, 3, 5, 10 wt%), and further utilized to produce biocomposites by fused deposition modeling (FDM)-based 3D printing at two raster angles (-45°/45° and 0°/90°). Differential scanning calorimetry, water uptake, density variation, morphology, and composting of the biocomposites were studied. The mechanical properties of the biocomposites (tensile, flexural, and Charpy impact properties) were determined following ASTM international norms. The addition of agave fibers to the filaments increased the crystallinity value from 23.7 to 44.1%. However, the fibers generated porous structures with a higher content of open cells and lower apparent densities than neat PLA pieces. The printing angle had a low significant effect on flexural and tensile properties, but directly affected the morphology of the printed biocomposites, positively influenced the impact strength, and slightly improved the absorption values for biocomposites printed at -45°/45°. Overall, increasing the concentrations of agave fibers had a detrimental effect on the mechanical properties of the biocomposites. The disintegration of the biocomposites under simulated composting conditions was slowed 1.6-fold with the addition of agave fibers, compared to neat PLA.
RESUMEN
Photopolymerized microparticles are made of biocompatible hydrogels like Polyethylene Glycol Diacrylate (PEGDA) by using microfluidic devices are a good option for encapsulation, transport and retention of biological or toxic agents. Due to the different applications of these microparticles, it is important to investigate the formulation and the mechanical properties of the material of which they are made of. Therefore, in the present study, mechanical tests were carried out to determine the swelling, drying, soluble fraction, compression, cross-linking density (Mc) and mesh size (ξ) properties of different hydrogel formulations. Tests provided sufficient data to select the best formulation for the future generation of microparticles using microfluidic devices. The initial gelation times of the hydrogels formulations were estimated for their use in the photopolymerization process inside a microfluidic device. Obtained results showed a close relationship between the amount of PEGDA used in the hydrogel and its mechanical properties as well as its initial gelation time. Consequently, it is of considerable importance to know the mechanical properties of the hydrogels made in this research for their proper manipulation and application. On the other hand, the initial gelation time is crucial in photopolymerizable hydrogels and their use in continuous systems such as microfluidic devices.
RESUMEN
In this work, the suitability for the production of sustainable and lightweight materials with specific mechanical properties and potentially lower costs was studied. Agave fiber (AF), an agro-industrial waste, was used as a reinforcement and azodicarbonamide (ACA) as a chemical blowing agent (CBA) in the production of bilayer materials via rotational molding. The external layer was a composite of linear medium density polyethylene (LMDPE) with different AF contents (0-15 wt %), while the internal layer was foamed LMDPE (using 0-0.75 wt % ACA). The samples were characterized in terms of thermal, morphological and mechanical properties to obtain a complete understanding of the structure-properties relationships. Increases in the thicknesses of the parts (up to 127%) and a bulk density reduction were obtained by using ACA (0.75 wt %) and AF (15 wt %). Further, the addition of AF increased the tensile (23%) and flexural (29%) moduli compared to the neat LMDPE, but when ACA was used, lower values (75% and 56% for the tensile and flexural moduli, respectively) were obtained. Based on these results, a balance between mechanical properties and lightweight can be achieved by selecting the AF and ACA contents, as well as the performance and aesthetics properties of the rotomolded parts.