Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(48): 12767-12772, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29109277

RESUMEN

Experimental studies of the evolution of reproductive isolation (RI) in real time are a powerful way in which to reveal fundamental, early processes that initiate divergence. In a classic speciation experiment, populations of Drosophila pseudoobscura were subjected to divergent dietary selection and evolved significant positive assortative mating by diet. More recently, a direct role for the gut microbiome in determining this type of RI in Drosophila melanogaster has been proposed. Manipulation of the diet, and hence the gut microbiome, was reported to result in immediate assortative mating by diet, which could be eliminated by reducing gut microbes using antibiotics and recreated by adding back Lactobacillus plantarum We suggest that the evolutionary significance of this result is unclear. For example, in D. melanogaster, the microbiome is reported as flexible and largely environmentally determined. Therefore, microbiome-mediated RI would be transient and would break down under dietary variation. In the absence of evolutionary coassociation or recurrent exposure between host and microbiome, there are no advantages for the gut bacteria or host in effecting RI. To explore these puzzling effects and their mechanisms further, we repeated the tests for RI associated with diet-specific gut microbiomes in D. melanogaster Despite observing replicable differences in the gut microbiomes of flies maintained on different diets, we found no evidence for diet-associated RI, for any role of gut bacteria, or for L. plantarum specifically. The results suggest that there is no general role for gut bacteria in driving the evolution of RI in this species and resolve an evolutionary riddle.


Asunto(s)
Drosophila melanogaster/genética , Drosophila/genética , Microbioma Gastrointestinal/genética , Especiación Genética , Aislamiento Reproductivo , Animales , Drosophila/microbiología , Drosophila melanogaster/microbiología , Femenino , Lactobacillus plantarum/genética , Lactobacillus plantarum/crecimiento & desarrollo , Lactobacillus plantarum/aislamiento & purificación , Masculino , Preferencia en el Apareamiento Animal/fisiología , Consorcios Microbianos/genética , Reproducción/genética , Simbiosis
2.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28250180

RESUMEN

Sexual conflict, in which the evolutionary interests of males and females diverge, shapes the evolution of reproductive systems across diverse taxa. Here, we used the fruit fly to study sexual conflict in natural, three-way interactions comprising a female, her current and previous mates. We manipulated the potential for sexual conflict by using sex peptide receptor (SPR) null females and by varying remating from 3 to 48 h, a period during which natural rematings frequently occur. SPR-lacking females do not respond to sex peptide (SP) transferred during mating and maintain virgin levels of high receptivity and low fecundity. In the absence of SPR, there was a convergence of fitness interests, with all individuals gaining highest productivity at 5 h remating. This suggests that the expression of sexual conflict was reduced. We observed an unexpected second male-specific advantage to early remating, resulting from an increase in the efficiency of second male sperm use. This early window of opportunity for exploitation by second males depended on the presence of SPR The results suggest that the SP pathway can modulate the expression of sexual conflict in this system, and show how variation in the selective forces that shape conflict and cooperation can be maintained.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Péptidos/fisiología , Receptores de Péptidos/fisiología , Conducta Sexual Animal , Animales , Femenino , Fertilidad , Péptidos y Proteínas de Señalización Intercelular , Masculino , Reproducción
5.
Microb Genom ; 8(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446250

RESUMEN

Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. ('Medkleb') isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.


Asunto(s)
Ceratitis capitata , Animales , Bacterias , Ceratitis capitata/genética , Ceratitis capitata/microbiología , Klebsiella/genética , Filogenia , ARN Ribosómico 16S/genética , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA