Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031003

RESUMEN

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Asunto(s)
Neoplasias del Colon/genética , Neoplasias del Colon/terapia , Proteogenómica/métodos , Apoptosis/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos , Proliferación Celular/genética , Neoplasias del Colon/metabolismo , Genómica/métodos , Glucólisis , Humanos , Inestabilidad de Microsatélites , Mutación , Fosforilación , Estudios Prospectivos , Proteómica/métodos , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
2.
Cell ; 166(3): 755-765, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27372738

RESUMEN

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Neoplasias/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Proteoma , Acetilación , Inestabilidad Cromosómica , Reparación del ADN , ADN de Neoplasias , Femenino , Dosificación de Gen , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Análisis de Supervivencia
3.
Mol Cell Proteomics ; 17(9): 1824-1836, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29666158

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS)-based proteomics studies of large sample cohorts can easily require from months to years to complete. Acquiring consistent, high-quality data in such large-scale studies is challenging because of normal variations in instrumentation performance over time, as well as artifacts introduced by the samples themselves, such as those because of collection, storage and processing. Existing quality control methods for proteomics data primarily focus on post-hoc analysis to remove low-quality data that would degrade downstream statistics; they are not designed to evaluate the data in near real-time, which would allow for interventions as soon as deviations in data quality are detected. In addition to flagging analyses that demonstrate outlier behavior, evaluating how the data structure changes over time can aide in understanding typical instrument performance or identify issues such as a degradation in data quality because of the need for instrument cleaning and/or re-calibration. To address this gap for proteomics, we developed Quality Control Analysis in Real-Time (QC-ART), a tool for evaluating data as they are acquired to dynamically flag potential issues with instrument performance or sample quality. QC-ART has similar accuracy as standard post-hoc analysis methods with the additional benefit of real-time analysis. We demonstrate the utility and performance of QC-ART in identifying deviations in data quality because of both instrument and sample issues in near real-time for LC-MS-based plasma proteomics analyses of a sample subset of The Environmental Determinants of Diabetes in the Young cohort. We also present a case where QC-ART facilitated the identification of oxidative modifications, which are often underappreciated in proteomic experiments.


Asunto(s)
Sistemas de Computación , Proteómica/métodos , Proteómica/normas , Control de Calidad , Espectrometría de Masas en Tándem/métodos , Algoritmos , Estudios de Cohortes , Bases de Datos de Proteínas , Humanos , Marcaje Isotópico , Oxidación-Reducción , Péptidos/metabolismo , Curva ROC , Interfaz Usuario-Computador
4.
Proc Natl Acad Sci U S A ; 114(7): E1205-E1214, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28137868

RESUMEN

Only a small fraction of vitamin B12-requiring organisms are able to synthesize B12 de novo, making it a common commodity in microbial communities. Initially recognized as an enzyme cofactor of a few enzymes, recent studies have revealed additional B12-binding enzymes and regulatory roles for B12 Here we report the development and use of a B12-based chemical probe to identify B12-binding proteins in a nonphototrophic B12-producing bacterium. Two unexpected discoveries resulted from this study. First, we identified a light-sensing B12-binding transcriptional regulator and demonstrated that it controls folate and ubiquinone biosynthesis. Second, our probe captured proteins involved in folate, methionine, and ubiquinone metabolism, suggesting that it may play a role as an allosteric effector of these processes. These metabolic processes produce precursors for synthesis of DNA, RNA, and protein. Thereby, B12 likely modulates growth, and by limiting its availability to auxotrophs, B12-producing organisms may facilitate coordination of community metabolism.


Asunto(s)
Ácido Fólico/metabolismo , Halomonas/metabolismo , Metionina/metabolismo , Ubiquinona/metabolismo , Vitamina B 12/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Fenómenos Bioquímicos/efectos de la radiación , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Halomonas/genética , Unión Proteica/efectos de la radiación , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Rayos Ultravioleta , Vitamina B 12/química
5.
Environ Sci Technol ; 53(6): 3018-3026, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30767514

RESUMEN

We investigated the extent to which contact with mineral surfaces affected the molecular integrity of a model protein, with an emphasis on identifying the mechanisms (hydrolysis, oxidation) and conditions leading to protein alteration. To this end, we studied the ability of four mineral surface archetypes (negatively charged, positively charged, neutral, redox-active) to abiotically fragment a well-characterized protein (GB1) as a function of pH and contact time. GB1 was exposed to the soil minerals montmorillonite, goethite, kaolinite, and birnessite at pH 5 and pH 7 for 1, 8, 24, and 168 h and the supernatant was screened for peptide fragments using Tandem Mass Spectrometry. To distinguish between products of oxidative and hydrolytic cleavage, we combined results from the SEQUEST algorithm, which identifies protein fragments that were cleaved hydrolytically, with the output of a deconvolution algorithm (DECON-Routine) designed to identify oxidation fragments. All four minerals were able to induce protein cleavage. Manganese oxide was effective at both hydrolytic and oxidative cleavage. The fact that phyllosilicates-which are not redox active-induced oxidative cleavage indicates that surfaces acted as catalysts and not as reactants. Our results extend previous observations of proteolytic capabilities in soil minerals to the groups of phyllosilicates and Fe-oxides. We identified structural regions of the protein with particularly high susceptibility to cleavage (loops and ß strands) as well as regions that were entirely unaffected (α helix).


Asunto(s)
Minerales , Suelo , Caolín , Oxidación-Reducción , Proteolisis
6.
Chem Res Toxicol ; 31(5): 308-318, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29688711

RESUMEN

Cytochrome P450 monooxygenase (P450) enzymes metabolize critical endogenous chemicals and oxidize nearly all xenobiotics. Dysregulated P450 activities lead to altered capacity for drug metabolism and cellular stress. The effects of mixed exposures on P450 expression and activity are variable and elusive. A high-fat diet (HFD) is a common exposure that results in obesity and associated pathologies including hepatotoxicity. Herein, we report the effects of cigarette smoke on P450 activities of normal weight and HFD induced obese mice. Activity-based protein profiling results indicate that HFD mice had significantly decreased P450 activity, likely instigated by proinflammatory chemicals, and that P450 enzymes involved in detoxification, xenobiotic metabolism, and bile acid synthesis were effected by HFD and smoke interaction. Smoking increased activity of all lung P450 and coexposure to diet effected P450 2s1. We need to expand our understanding of common exposures coupled to altered P450 metabolism to enhance the safety and efficacy of therapeutic drug dosing.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Dieta Alta en Grasa/efectos adversos , Xenobióticos/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/inducido químicamente , Humo/efectos adversos , Productos de Tabaco/efectos adversos
7.
Mol Cell Proteomics ; 15(12): 3694-3705, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27670688

RESUMEN

Current proteomic approaches include both broad discovery measurements and quantitative targeted analyses. In many cases, discovery measurements are initially used to identify potentially important proteins (e.g. candidate biomarkers) and then targeted studies are employed to quantify a limited number of selected proteins. Both approaches, however, suffer from limitations. Discovery measurements aim to sample the whole proteome but have lower sensitivity, accuracy, and quantitation precision than targeted approaches, whereas targeted measurements are significantly more sensitive but only sample a limited portion of the proteome. Herein, we describe a new approach that performs both discovery and targeted monitoring (DTM) in a single analysis by combining liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled target peptides are spiked into tryptic digests and both the labeled and unlabeled peptides are detected using LC-IMS-MS instrumentation. Compared with the broad LC-MS discovery measurements, DTM yields greater peptide/protein coverage and detects lower abundance species. DTM also achieved detection limits similar to selected reaction monitoring (SRM) indicating its potential for combined high quality discovery and targeted analyses, which is a significant step toward the convergence of discovery and targeted approaches.


Asunto(s)
Neoplasias de la Mama/metabolismo , Péptidos/análisis , Proteoma/aislamiento & purificación , Proteómica/métodos , Animales , Cromatografía Liquida/métodos , Femenino , Humanos , Espectrometría de Masas/métodos , Ratones , Trasplante de Neoplasias
8.
Proc Natl Acad Sci U S A ; 109(19): 7280-5, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22517741

RESUMEN

O-linked N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification of Ser and Thr residues on cytosolic and nuclear proteins of higher eukaryotes catalyzed by O-GlcNAc transferase (OGT). O-GlcNAc has recently been found on Notch1 extracellular domain catalyzed by EGF domain-specific OGT. Aberrant O-GlcNAc modification of brain proteins has been linked to Alzheimer's disease (AD). However, understanding specific functions of O-GlcNAcylation in AD has been impeded by the difficulty in characterization of O-GlcNAc sites on proteins. In this study, we modified a chemical/enzymatic photochemical cleavage approach for enriching O-GlcNAcylated peptides in samples containing ∼100 µg of tryptic peptides from mouse cerebrocortical brain tissue. A total of 274 O-GlcNAcylated proteins were identified. Of these, 168 were not previously known to be modified by O-GlcNAc. Overall, 458 O-GlcNAc sites in 195 proteins were identified. Many of the modified residues are either known phosphorylation sites or located proximal to known phosphorylation sites. These findings support the proposed regulatory cross-talk between O-GlcNAcylation and phosphorylation. This study produced the most comprehensive O-GlcNAc proteome of mammalian brain tissue with both protein identification and O-GlcNAc site assignment. Interestingly, we observed O-ß-GlcNAc on EGF-like repeats in the extracellular domains of five membrane proteins, expanding the evidence for extracellular O-GlcNAcylation by the EGF domain-specific OGT. We also report a GlcNAc-ß-1,3-Fuc-α-1-O-Thr modification on the EGF-like repeat of the versican core protein, a proposed substrate of Fringe ß-1,3-N-acetylglucosaminyltransferases.


Asunto(s)
Acetilglucosamina/metabolismo , Encéfalo/enzimología , N-Acetilglucosaminiltransferasas/metabolismo , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Encéfalo/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Ratones , Datos de Secuencia Molecular , Orgánulos/metabolismo , Péptidos/metabolismo , Fosforilación , Proteoma/metabolismo , Proteómica/métodos
9.
J Proteome Res ; 13(3): 1200-10, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24467184

RESUMEN

Protein-stable isotope probing (protein-SIP) has strong potential for revealing key metabolizing taxa in complex microbial communities. While most protein-SIP work to date has been performed under controlled laboratory conditions to allow extensive isotope labeling of the target organism(s), a key application will be in situ studies of microbial communities for short periods of time under natural conditions that result in small degrees of partial labeling. One hurdle restricting large-scale in situ protein-SIP studies is the lack of algorithms and software for automated data processing of the massive data sets resulting from such studies. In response, we developed Stable Isotope Probing Protein Extraction Resources software (SIPPER) and applied it for large-scale extraction and visualization of data from short-term (3 h) protein-SIP experiments performed in situ on phototrophic bacterial mats isolated from Yellowstone National Park. Several metrics incorporated into the software allow it to support exhaustive analysis of the complex composite isotopic envelope observed as a result of low amounts of partial label incorporation. SIPPER also enables the detection of labeled molecular species without the need for any prior identification.


Asunto(s)
Proteínas Bacterianas/análisis , Consorcios Microbianos/genética , Proteoma/análisis , Programas Informáticos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Isótopos de Carbono , Biología Computacional , Minería de Datos , Expresión Génica , Marcaje Isotópico , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Procesos Fototróficos , Proteoma/genética , Proteoma/metabolismo
10.
Anal Bioanal Chem ; 406(28): 7117-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25192788

RESUMEN

Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 µL) due to low yields stemming from losses caused by nonspecific binding to the column matrix and concentration of large eluent volumes. Additionally, the cost of the depletion media can be prohibitive for larger-scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizing sample recovery when samples are limited, as well as for reducing the expense of large-scale studies. We characterized the performance of a 346 µL column volume microscale depletion system, using four different flow rates to determine the most effective depletion conditions for ∼6-µL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10-mL depletion column served as the control. Results showed depletion efficiency of the microscale column increased as flow rate decreased, and that our microdepletion was reproducible. In an initial application, a 600-µL sample of human cerebrospinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.


Asunto(s)
Albúminas/aislamiento & purificación , Proteínas Sanguíneas/análisis , Cromatografía de Afinidad/métodos , Esclerosis Múltiple/sangre , Esclerosis Múltiple/líquido cefalorraquídeo , Proteoma/análisis , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Cromatografía Liquida , Humanos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
11.
Mol Cell Proteomics ; 11(11): 1140-55, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22843990

RESUMEN

Root hairs are single hair-forming cells on roots that function to increase root surface area, enhancing water and nutrient uptake. In leguminous plants, root hairs also play a critical role as the site of infection by symbiotic nitrogen fixing rhizobia, leading to the formation of a novel organ, the nodule. The initial steps in the rhizobia-root hair infection process are known to involve specific receptor kinases and subsequent kinase cascades. Here, we characterize the phosphoproteome of the root hairs and the corresponding stripped roots (i.e. roots from which root hairs were removed) during rhizobial colonization and infection to gain insight into the molecular mechanism of root hair cell biology. We chose soybean (Glycine max L.), one of the most important crop plants in the legume family, for this study because of its larger root size, which permits isolation of sufficient root hair material for phosphoproteomic analysis. Phosphopeptides derived from root hairs and stripped roots, mock inoculated or inoculated with the soybean-specific rhizobium Bradyrhizobium japonicum, were labeled with the isobaric tag eight-plex iTRAQ, enriched using Ni-NTA magnetic beads and subjected to nanoRPLC-MS/MS1 analysis using HCD and decision tree guided CID/ETD strategy. A total of 1625 unique phosphopeptides, spanning 1659 nonredundant phosphorylation sites, were detected from 1126 soybean phosphoproteins. Among them, 273 phosphopeptides corresponding to 240 phosphoproteins were found to be significantly regulated (>1.5-fold abundance change) in response to inoculation with B. japonicum. The data reveal unique features of the soybean root hair phosphoproteome, including root hair and stripped root-specific phosphorylation suggesting a complex network of kinase-substrate and phosphatase-substrate interactions in response to rhizobial inoculation.


Asunto(s)
Bradyrhizobium/fisiología , Glycine max/metabolismo , Glycine max/microbiología , Fosfoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteómica/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Bradyrhizobium/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Duplicación de Gen , Interacciones Huésped-Patógeno/efectos de los fármacos , Espectrometría de Masas , Medicago truncatula/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos/efectos de los fármacos , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Fosfoproteínas/química , Fosforilación/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Nodulación de la Raíz de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Proteínas Quinasas/metabolismo , Proteoma/química , Proteoma/metabolismo , Glycine max/enzimología , Glycine max/genética , Estadística como Asunto , Agua
12.
Electrophoresis ; 34(11): 1619-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23494780

RESUMEN

Enrichment of bacterial phosphopeptides is an essential step prior to bottom-up mass spectrometry-based analysis of the phosphoproteome, which is fundamental to understanding the role of phosphoproteins in cell signaling and regulation of protein activity. We developed an automated immobilized metal affinity chromatography (IMAC) system to enrich strong cation exchange-fractionated phosphopeptides from the soluble proteome of Escherichia coli MG1655 grown on minimal medium. Initial demonstration of the system resulted in identification of 75 phosphopeptides covering 52 phosphoproteins. Consistent with previous studies, many of these phosphoproteins are involved in the carbohydrate portion of central metabolism. The automated system utilizes a large capacity IMAC column that can effectively enrich phosphopeptides from a bacterial sample by increasing peptide loading and reducing the wash time. An additional benefit of the automated IMAC system is reduced labor and associated costs.


Asunto(s)
Cromatografía de Afinidad/instrumentación , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/química , Fosfoproteínas/aislamiento & purificación , Secuencia de Aminoácidos , Diseño de Equipo , Proteínas de Escherichia coli/química , Metales/química , Datos de Secuencia Molecular , Fosfopéptidos/química , Fosfopéptidos/aislamiento & purificación , Fosfoproteínas/química , Fosforilación , Proteómica/métodos
13.
Cell Rep Med ; 4(7): 101093, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37390828

RESUMEN

Type 1 diabetes (T1D) results from autoimmune destruction of ß cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Autoinmunidad , Autoanticuerpos , Biomarcadores
14.
J Proteome Res ; 10(7): 3076-88, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21612289

RESUMEN

Nonenzymatic glycation of proteins sets the stage for formation of advanced glycation end-products and development of chronic complications of diabetes. In this report, we extended our previous methods on proteomics analysis of glycated proteins to comprehensively identify glycated proteins in control and diabetic human plasma and erythrocytes. Using immunodepletion, enrichment, and fractionation strategies, we identified 7749 unique glycated peptides, corresponding to 3742 unique glycated proteins. Semiquantitative comparisons showed that glycation levels of a number of proteins were significantly increased in diabetes and that erythrocyte proteins were more extensively glycated than plasma proteins. A glycation motif analysis revealed that some amino acids were favored more than others in the protein primary structures in the vicinity of the glycation sites in both sample types. The glycated peptides and corresponding proteins reported here provide a foundation for potential identification of novel markers for diabetes, hyperglycemia, and diabetic complications in future studies.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Diabetes Mellitus Tipo 2/sangre , Eritrocitos/química , Productos Finales de Glicación Avanzada , Glicopéptidos , Fragmentos de Péptidos/sangre , Plasma/química , Proteómica/métodos , Secuencias de Aminoácidos , Biomarcadores/química , Proteínas Sanguíneas/química , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Productos Finales de Glicación Avanzada/sangre , Productos Finales de Glicación Avanzada/química , Glicopéptidos/sangre , Glicopéptidos/química , Glicosilación , Humanos , Hiperglucemia/sangre , Hiperglucemia/fisiopatología , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Espectrometría de Masas en Tándem , Tripsina/metabolismo
15.
Rapid Commun Mass Spectrom ; 25(10): 1452-6, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21504012

RESUMEN

Two unexpected singly charged ions at m/z 1103 and 944 have been observed in mass spectra obtained from electrospray ionization mass spectrometric analysis of liquid chromatography effluents with mobile phases containing trifluoroacetic acid (TFA) that severely interfered with sample analysis. Accurate mass measurement and tandem mass spectrometry studies revealed that these two ions are composed of three components; clusters of trifluoroacetic acid, clusters of mass 159 and iron. Formation of these ions is inhibited by removing TFA from the mobile phases and using formic acid in its place, replacing the stainless steel union with a titanium union or by adding a small blank fused-silica capillary column between the chromatography column and the electrospray tip via a stainless steel union without any adverse effects to chromatographic separation, peak broadening or peptide identifications.


Asunto(s)
Cromatografía Liquida/métodos , Hierro/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Ácido Trifluoroacético/química , Complejos de Coordinación/química , Iones/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación
16.
Proc Natl Acad Sci U S A ; 105(6): 1931-6, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18245386

RESUMEN

Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4,855 proteins were mapped, revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation, including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process, including those that control Rac and Cdc42 signaling.


Asunto(s)
Neuritas , Proteoma , Proteína de Unión al GTP cdc42/fisiología , Proteínas de Unión al GTP rac/fisiología , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Interferencia de ARN , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo
17.
Front Plant Sci ; 12: 664250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113365

RESUMEN

Multiple Arabidopsis arogenate dehydratase (ADT) knock-out (KO) mutants, with phenotypes having variable lignin levels (up to circa 70% reduction), were studied to investigate how differential reductions in ADTs perturb its overall plant systems biology. Integrated "omics" analyses (metabolome, transcriptome, and proteome) of wild type (WT), single and multiple ADT KO lines were conducted. Transcriptome and proteome data were collapsed into gene ortholog (GO) data, with this allowing for enzymatic reaction and metabolome cross-comparisons to uncover dominant or likely metabolic biosynthesis reactions affected. Network analysis of enzymes-highly correlated to stem lignin levels-deduced the involvement of novel putative lignin related proteins or processes. These included those associated with ribosomes, the spliceosome, mRNA transport, aminoacyl tRNA biosynthesis, and phosphorylation. While prior work helped explain lignin biosynthesis regulation at the transcriptional level, our data here provide support for a new hypothesis that there are additional post-transcriptional and translational level processes that need to be considered. These findings are anticipated to lead to development of more accurate depictions of lignin/phenylpropanoid biosynthesis models in situ, with new protein targets identified for further biochemical analysis and/or plant bioengineering. Additionally, using KEGG defined functional categorization of proteomics and transcriptomics analyses, we detected significant changes to glucosinolate, α-linolenic acid, nitrogen, carotenoid, aromatic amino acid, phenylpropanoid, and photosynthesis-related metabolic pathways in ADT KO mutants. Metabolomics results also revealed that putative carotenoid and galactolipid levels were generally increased in amount, whereas many glucosinolates and phenylpropanoids (including flavonoids and lignans) were decreased in the KO mutants.

19.
Cell Rep Med ; 1(1)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32529193

RESUMEN

In the absence of a dominant driving mutation other than uniformly present TP53 mutations, deeper understanding of the biology driving ovarian high-grade serous cancer (HGSC) requires analysis at a functional level, including post-translational modifications. Comprehensive proteogenomic and phosphoproteomic characterization of 83 prospectively collected ovarian HGSC and appropriate normal precursor tissue samples (fallopian tube) under strict control of ischemia time reveals pathways that significantly differentiate between HGSC and relevant normal tissues in the context of homologous repair deficiency (HRD) status. In addition to confirming key features of HGSC from previous studies, including a potential survival-associated signature and histone acetylation as a marker of HRD, deep phosphoproteomics provides insights regarding the potential role of proliferation-induced replication stress in promoting the characteristic chromosomal instability of HGSC and suggests potential therapeutic targets for use in precision medicine trials.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Cistadenocarcinoma Seroso , Replicación del ADN/genética , Neoplasias Ováricas , Fosfotransferasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Puntos de Control del Ciclo Celular/genética , Estudios de Cohortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/mortalidad , Daño del ADN , Neoplasias de las Trompas Uterinas/genética , Neoplasias de las Trompas Uterinas/metabolismo , Neoplasias de las Trompas Uterinas/mortalidad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Persona de Mediana Edad , Mitosis/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Fosfotransferasas/metabolismo , Proteogenómica , Transcriptoma , Proteína p53 Supresora de Tumor/genética
20.
Infect Immun ; 77(8): 3227-33, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19528222

RESUMEN

To investigate the extent to which macrophages respond to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serotype Typhimurium and analyzed macrophage proteins at various time points following infection by using a global proteomic approach. A total of 1,006 macrophage and 115 Salmonella proteins were identified with high confidence. Most of the Salmonella proteins were observed in the late stage of the infection time course, which is consistent with the fact that the bacterial cells proliferate inside RAW 264.7 macrophages. The peptide abundances of most of the identified macrophage proteins remained relatively constant over the time course of infection. Compared to those of the control, the peptide abundances of 244 macrophage proteins (i.e., 24% of the total identified macrophage proteins) changed significantly after infection. The functions of these Salmonella-affected macrophage proteins were diverse, including production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase), production of prostaglandin H(2) (i.e., cyclooxygenase 2), and regulation of intracellular traffic (e.g., sorting nexin 5 [SNX5], SNX6, and SNX9). Diverse functions of the Salmonella-affected macrophage proteins demonstrate a global macrophage response to Salmonella infection. Western blot analysis not only confirmed the proteomic results for a selected set of proteins but also revealed that (i) the protein abundance of mitochondrial superoxide dismutase increased following macrophage infection, indicating an infection-induced oxidative stress in mitochondria, and (ii) in contrast to infection of macrophages by wild-type Salmonella, infection by the sopB deletion mutant had no negative impact on the abundance of SNX6, suggesting a role for SopB in regulating the abundance of SNX6.


Asunto(s)
Macrófagos/química , Macrófagos/fisiología , Proteoma/análisis , Salmonella typhimurium/inmunología , Estrés Fisiológico , Animales , Línea Celular , Macrófagos/microbiología , Ratones , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA