Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuromodulation ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878055

RESUMEN

OBJECTIVE: Advancements in deep brain stimulation (DBS) devices provide a unique opportunity to record local field potentials longitudinally to improve the efficacy of treatment for intractable facial pain. We aimed to identify potential electrophysiological biomarkers of pain in the ventral posteromedial nucleus (VPM) of the thalamus and periaqueductal gray (PAG) using a long-term sensing DBS system. MATERIALS AND METHODS: We analyzed power spectra of ambulatory pain-related events from one patient implanted with a long-term sensing generator, representing different pain intensities (pain >7, pain >9) and pain qualities (no pain, burning, stabbing, and shocking pain). Power spectra were parametrized to separate oscillatory and aperiodic features and compared across the different pain states. RESULTS: Overall, 96 events were marked during a 16-month follow-up. Parameterization of spectra revealed a total of 62 oscillatory peaks with most in the VPM (77.4%). The pain-free condition did not show any oscillations. In contrast, ß peaks were observed in the VPM during all episodes (100%) associated with pain >9, 56% of episodes with pain >7, and 50% of burning pain events (center frequencies: 28.4 Hz, 17.8 Hz, and 20.7 Hz, respectively). Episodes of pain >9 indicated the highest relative ß band power in the VPM and decreased aperiodic exponents (denoting the slope of the power spectra) in both the VPM and PAG. CONCLUSIONS: For this patient, an increase in ß band activity in the sensory thalamus was associated with severe facial pain, opening the possibility for closed-loop DBS in facial pain.

2.
MRS Bull ; 48(5): 531-546, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37476355

RESUMEN

Electrophysiological recording and stimulation are the gold standard for functional mapping during surgical and therapeutic interventions as well as capturing cellular activity in the intact human brain. A critical component probing human brain activity is the interface material at the electrode contact that electrochemically transduces brain signals to and from free charge carriers in the measurement system. Here, we summarize state-of-the-art electrode array systems in the context of translation for use in recording and stimulating human brain activity. We leverage parametric studies with multiple electrode materials to shed light on the varied levels of suitability to enable high signal-to-noise electrophysiological recordings as well as safe electrophysiological stimulation delivery. We discuss the effects of electrode scaling for recording and stimulation in pursuit of high spatial resolution, channel count electrode interfaces, delineating the electrode-tissue circuit components that dictate the electrode performance. Finally, we summarize recent efforts in the connectorization and packaging for high channel count electrode arrays and provide a brief account of efforts toward wireless neuronal monitoring systems.

3.
Curr Microbiol ; 80(9): 294, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481620

RESUMEN

In the present study, we compared mucus and gut-associated prokaryotic communities from seven nudibranch species with sediment and seawater from Thai coral reefs using high-throughput 16S rRNA gene sequencing. The nudibranch species were identified as Doriprismatica atromarginata (family Chromodorididae), Jorunna funebris (family Discodorididae), Phyllidiella nigra, Phyllidiella pustulosa, Phyllidia carlsonhoffi, Phyllidia elegans, and Phyllidia picta (all family Phyllidiidae). The most abundant bacterial phyla in the dataset were Proteobacteria, Tenericutes, Chloroflexi, Thaumarchaeota, and Cyanobacteria. Mucus and gut-associated communities differed from one another and from sediment and seawater communities. Host phylogeny was, furthermore, a significant predictor of differences in mucus and gut-associated prokaryotic community composition. With respect to higher taxon abundance, the order Rhizobiales (Proteobacteria) was more abundant in Phyllidia species (mucus and gut), whereas the order Mycoplasmatales (Tenericutes) was more abundant in D. atromarginata and J. funebris. Mucus samples were, furthermore, associated with greater abundances of certain phyla including Chloroflexi, Poribacteria, and Gemmatimonadetes, taxa considered to be indicators for high microbial abundance (HMA) sponge species. Overall, our results indicated that nudibranch microbiomes consisted of a number of abundant prokaryotic members with high sequence similarities to organisms previously detected in sponges.


Asunto(s)
Chloroflexi , Gastrópodos , Microbiota , Animales , ARN Ribosómico 16S/genética , Células Procariotas , Proteobacteria , Moco , Microbiota/genética , Agua de Mar
4.
Neurosurg Focus ; 54(2): E4, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724521

RESUMEN

OBJECTIVE: Stereotactic electroencephalography (sEEG) is an increasingly utilized method for identifying electrophysiological processes underlying sensorimotor, cognitive, and emotional behaviors. In this review, the authors outline current research using sEEG to investigate the neural activity underlying emotional and psychiatric behaviors. Understanding the current structure of intracranial research using sEEG will inform future studies of psychiatric disease and therapeutics for effective neuromodulation. METHODS: The authors conducted a comprehensive systematic review of studies according to PRISMA guidelines to investigate behaviors related to psychiatric conditions in patients with epilepsy undergoing monitoring with sEEG. Articles indexed on PubMed between 2010 and 2022 were included if they studied emotions or affective behaviors or met the National Institute of Mental Health Research Domain Criteria positive and negative valence domains. Data extracted from articles included study sample size, paradigms and behavioral tasks employed, cortical and subcortical targets, EEG analysis methods, and identified electrophysiological activity underlying the studied behavior. The Newcastle-Ottawa Scale was used to assess bias risk. RESULTS: Thirty-two primary articles met inclusion criteria. Study populations ranged from 3 to 39 patients. The most common structures investigated were the amygdala, insula, orbitofrontal cortex (OFC), hippocampus, and anterior cingulate cortex (ACC). Paradigms, stimuli, and behavioral tasks widely varied. Time-frequency analyses were the most common, followed by connectivity analyses. Multiple oscillations encoded a variety of behaviors related to emotional and psychiatric conditions. High gamma activity was observed in the amygdala and anterior insula in response to aversive audiovisual stimuli and in the OFC in response to reward processing. ACC beta band power increases and hippocampal-amygdala beta coherence variations were predictive of worsening mood states. Insular and amygdalar theta oscillations encoded social pain and fear learning, respectively. Most studies performed passing recordings, allowing for the decoding of affective states and depression symptoms, while other studies utilized direct stimulation, such as in the OFC to improve mood symptoms. CONCLUSIONS: Stereotactic EEG in epilepsy has identified multiple corticolimbic structures with specific oscillatory and synchronization activity underlying a diverse range of behaviors related to emotions and affective conditions. Given the heterogeneity of psychiatric conditions, sEEG provides an opportunity to study these neural correlates to develop personalized effective neuromodulatory treatments. Future studies should focus on optimizing paradigms and tasks to investigate a broad range of behavioral phenotypes that overlap across psychiatric conditions.


Asunto(s)
Emociones , Epilepsia , Humanos , Emociones/fisiología , Electroencefalografía/métodos , Epilepsia/cirugía , Corteza Prefrontal , Miedo
5.
J Craniofac Surg ; 34(7): e682-e684, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639663

RESUMEN

Syndrome of the Trephined (SoT) is a frequently misunderstood and underdiagnosed outcome of decompressive craniectomy, especially in cases of trauma. The pressure gradient between atmospheric pressure and the sub-atmospheric intracranial pressure results in a sinking of the scalp overlying the craniectomy site. This gradually compresses the underlying brain parenchyma. This parenchymal compression can disrupt normal autoregulation and subsequent metabolism, yielding symptoms ranging from headaches, dizziness, altered behavior to changes in sensation, and difficulty with ambulation, coordination, and activities of daily living. We present a case of SoT treated with a 3D-printed custom polycarbonate external cranial orthotic that allowed us to re-establish this pressure gradient by returning the cranium to a closed system. The patient demonstrated subjective improvement in quality of life and his symptoms. This was consistent with the re-expanded brain parenchyma on CT imaging.


Asunto(s)
Craniectomía Descompresiva , Trepanación , Humanos , Actividades Cotidianas , Calidad de Vida , Cráneo/diagnóstico por imagen , Cráneo/cirugía , Impresión Tridimensional
6.
Adv Funct Mater ; 32(25)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-36381629

RESUMEN

The Utah array powers cutting-edge projects for restoration of neurological function, such as BrainGate, but the underlying electrode technology has itself advanced little in the last three decades. Here, advanced dual-side lithographic microfabrication processes is exploited to demonstrate a 1024-channel penetrating silicon microneedle array (SiMNA) that is scalable in its recording capabilities and cortical coverage and is suitable for clinical translation. The SiMNA is the first penetrating microneedle array with a flexible backing that affords compliancy to brain movements. In addition, the SiMNA is optically transparent permitting simultaneous optical and electrophysiological interrogation of neuronal activity. The SiMNA is used to demonstrate reliable recordings of spontaneous and evoked field potentials and of single unit activity in chronically implanted mice for up to 196 days in response to optogenetic and to whisker air-puff stimuli. Significantly, the 1024-channel SiMNA establishes detailed spatiotemporal mapping of broadband brain activity in rats. This novel scalable and biocompatible SiMNA with its multimodal capability and sensitivity to broadband brain activity will accelerate the progress in fundamental neurophysiological investigations and establishes a new milestone for penetrating and large area coverage microelectrode arrays for brain-machine interfaces.

7.
Mol Ecol ; 31(19): 4932-4948, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35881675

RESUMEN

Understanding the maintenance and origin of beta diversity is a central topic in ecology. However, the factors that drive diversity patterns and underlying processes remain unclear, particularly for host-prokaryotic associations. Here, beta diversity patterns were studied in five prokaryotic biotopes, namely, two high microbial abundance (HMA) sponge taxa (Xestospongia spp. and Hyrtios erectus), one low microbial abundance (LMA) sponge taxon (Stylissa carteri), sediment and seawater sampled across thousands of kilometres. Using multiple regression on distance matrices (MRM), spatial (geographic distance) and environmental (sea surface temperature and chlorophyll α concentrations) variables proved significant predictors of beta diversity in all five biotopes and together explained from 54% to 82% of variation in dissimilarity of both HMA species, 27% to 43% of variation in sediment and seawater, but only 20% of variation of the LMA S. carteri. Variance partitioning was subsequently used to partition the variation into purely spatial, purely environmental and spatially-structured environmental components. The amount of variation in dissimilarity explained by the purely spatial component was lowest for S. carteri at 11% and highest for H. erectus at 55%. The purely environmental component, in turn, only explained from 0.15% to 2.83% of variation in all biotopes. In addition to spatial and environmental variables, a matrix of genetic differences between pairs of sponge individuals also proved a significant predictor of variation in prokaryotic dissimilarity of the Xestospongia species complex. We discuss the implications of these results for the HMA-LMA dichotomy and compare the MRM results with results obtained using constrained ordination and zeta diversity.


Asunto(s)
Biodiversidad , Poríferos , Animales , Bacterias/genética , Clorofila , Humanos , Filogenia , Poríferos/genética , ARN Ribosómico 16S/genética , Agua de Mar
8.
Cereb Cortex ; 31(8): 3678-3700, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33749727

RESUMEN

Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Estimulación Acústica , Adulto , Animales , Estimulación Eléctrica , Electroencefalografía , Fenómenos Electrofisiológicos , Epilepsia/fisiopatología , Espacio Extracelular/fisiología , Femenino , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microelectrodos , Persona de Mediana Edad , Corteza Somatosensorial/fisiología , Análisis de Ondículas , Adulto Joven
9.
Mar Drugs ; 21(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36662207

RESUMEN

Marine microbiomes are prolific sources of bioactive natural products of potential pharmaceutical value. This study inspected two culture collections comprising 919 host-associated marine bacteria belonging to 55 genera and several thus-far unclassified lineages to identify isolates with potentially rich secondary metabolism and antimicrobial activities. Seventy representative isolates had their genomes mined for secondary metabolite biosynthetic gene clusters (SM-BGCs) and were screened for antimicrobial activities against four pathogenic bacteria and five pathogenic Candida strains. In total, 466 SM-BGCs were identified, with antimicrobial peptide- and polyketide synthase-related SM-BGCs being frequently detected. Only 38 SM-BGCs had similarities greater than 70% to SM-BGCs encoding known compounds, highlighting the potential biosynthetic novelty encoded by these genomes. Cross-streak assays showed that 33 of the 70 genome-sequenced isolates were active against at least one Candida species, while 44 isolates showed activity against at least one bacterial pathogen. Taxon-specific differences in antimicrobial activity among isolates suggested distinct molecules involved in antagonism against bacterial versus Candida pathogens. The here reported culture collections and genome-sequenced isolates constitute a valuable resource of understudied marine bacteria displaying antimicrobial activities and potential for the biosynthesis of novel secondary metabolites, holding promise for a future sustainable production of marine drug leads.


Asunto(s)
Antozoos , Antiinfecciosos , Poríferos , Animales , Humanos , Metabolismo Secundario/genética , Bacterias/metabolismo , Poríferos/genética , Familia de Multigenes , Candida , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Antozoos/genética , Filogenia
10.
Antonie Van Leeuwenhoek ; 114(1): 95-112, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33369710

RESUMEN

Marine sponges are abundant and ecologically important components of coral reefs and have been shown to harbour exceptionally high microbial densities, which can differ substantially among sponge species. However, this dichotomy between high and low microbial abundance (HMA, LMA) sponges is still not fully understood, particularly as concerns the archaeal community. This study aims to fill this gap by analysing (using 454-pyrosequencing of the 16S rRNA gene) how the archaeal community varies among known LMA (Stylissa carteri, and Stylissa massa), known HMA (Hyrtios erectus and Xestospongia testudinaria) and unknown HMA/LMA status sponge species (Ectyoplasia coccinea, Paratetilla bacca and Petrosia aff. spheroida) collected in a remote location in which very few sponge microbial composition studies have been previously performed (Mayotte, Comores archipelago, France) and comparing the results with those reported in four other geographical areas. Based on archaeal community composition, the known LMA sponges formed a distinct cluster together with Paratetilla bacca, Ectyoplasia coccinea and seawater while the known HMA sponge X. testudinaria formed a cluster with Petrosia aff. spheroida. The known HMA sponge H. erectus, in turn, had an intermediate archaeal community between HMA sponges and sediment samples. In addition to the above, we also showed significant compositional congruence between archaeal and bacterial communities sampled from the same sponge individuals. HMA sponges were mainly dominated by members assigned to the genus Nitrosopumilus while LMA sponges were mainly dominated by members assigned to the genus Cenarchaeum. In general, there was no clear difference in richness between HMA and LMA sponges. Evenness, however, was higher in HMA than LMA sponges. Whilst the present study corroborates some of the traits commonly associated with the HMA-LMA dichotomy (higher evenness in Mayotte HMA sponges), this was not consistent across geographical areas showing that more research is needed to fully understand the HMA/LMA dichotomy as concerns Archaea.


Asunto(s)
Archaea , Poríferos , Animales , Archaea/genética , Biodiversidad , Comoras , Humanos , Filogenia , ARN Ribosómico 16S/genética , Agua de Mar
11.
PLoS Comput Biol ; 15(2): e1006769, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30742605

RESUMEN

Electrocorticography (ECoG) is becoming more prevalent due to improvements in fabrication and recording technology as well as its ease of implantation compared to intracortical electrophysiology, larger cortical coverage, and potential advantages for use in long term chronic implantation. Given the flexibility in the design of ECoG grids, which is only increasing, it remains an open question what geometry of the electrodes is optimal for an application. Conductive polymer, PEDOT:PSS, coated microelectrodes have an advantage that they can be made very small without losing low impedance. This makes them suitable for evaluating the required granularity of ECoG recording in humans and experimental animals. We used two-dimensional (2D) micro-ECoG grids to record intra-operatively in humans and during acute implantations in mouse with separation distance between neighboring electrodes (i.e., pitch) of 0.4 mm and 0.2/0.25 mm respectively. To assess the spatial properties of the signals, we used the average correlation between electrodes as a function of the pitch. In agreement with prior studies, we find a strong frequency dependence in the spatial scale of correlation. By applying independent component analysis (ICA), we find that the spatial pattern of correlation is largely due to contributions from multiple spatially extended, time-locked sources present at any given time. Our analysis indicates the presence of spatially structured activity down to the sub-millimeter spatial scale in ECoG despite the effects of volume conduction, justifying the use of dense micro-ECoG grids.


Asunto(s)
Electrocorticografía/métodos , Animales , Interfaces Cerebro-Computador , Corteza Cerebral , Conductividad Eléctrica , Electrodos Implantados , Electroencefalografía/métodos , Fenómenos Electrofisiológicos , Humanos , Ratones , Microelectrodos , Polímeros , Registros
12.
Antonie Van Leeuwenhoek ; 113(4): 563-587, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31802337

RESUMEN

In a previous study, we identified host species that housed high and low diversity prokaryotic communities. In the present study, we expand on this and assessed the prokaryotic communities associated with seawater, sediment and 11 host species from 7 different phyla in a Taiwanese coral reef setting. The host taxa sampled included hard, octo- and black corals, molluscs, bryozoans, flatworms, fish and sea urchins. There were highly significant differences in composition among host species and all host species housed distinct communities from those found in seawater and sediment. In a hierarchical clustering analysis, samples from all host species, with the exception of the coral Galaxea astreata, formed significantly supported clusters. In addition to this, the coral G. astreata and the bryozoan Triphyllozoon inornatum on the one hand and the coral Tubastraea coccinea, the hermit crab Calcinus laevimanus and the flatworm Thysanozoon nigropapillosum on the other formed significantly supported clusters. In addition to composition, there were highly pronounced differences in richness and evenness among host species from the most diverse species, the bryozoan T. inornatum at 2518 ± 240 OTUs per 10,000 sequences to the least diverse species, the octocoral Cladiella sp. at 142 ± 14 OTUs per 10,000 sequences. In line with the differences in composition, there were significant differences in predicted metagenomic gene counts among host species. Furthermore, there were pronounced compositional and predicted functional differences between high diversity hosts (Liolophura japonica, G. astreata, T. coccinea, C. laevimanus, T. inornatum) and low diversity hosts (Antipathes sp., Pomacentrus coelestis, Modiolus auriculatus, T. nigropapillosum, Cladiella sp. and Diadema savigny). In particular, we found that all tested low diversity hosts were predicted to be enriched for the phosphotransferase system compared to high diversity hosts.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Arrecifes de Coral , Invertebrados/microbiología , Animales , Metagenómica , Especificidad de la Especie
13.
Nano Lett ; 19(9): 6244-6254, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31369283

RESUMEN

The enhanced electrochemical activity of nanostructured materials is readily exploited in energy devices, but their utility in scalable and human-compatible implantable neural interfaces can significantly advance the performance of clinical and research electrodes. We utilize low-temperature selective dealloying to develop scalable and biocompatible one-dimensional platinum nanorod (PtNR) arrays that exhibit superb electrochemical properties at various length scales, stability, and biocompatibility for high performance neurotechnologies. PtNR arrays record brain activity with cellular resolution from the cortical surfaces in birds and nonhuman primates. Significantly, strong modulation of surface recorded single unit activity by auditory stimuli is demonstrated in European Starling birds as well as the modulation of local field potentials in the visual cortex by light stimuli in a nonhuman primate and responses to electrical stimulation in mice. PtNRs record behaviorally and physiologically relevant neuronal dynamics from the surface of the brain with high spatiotemporal resolution, which paves the way for less invasive brain-machine interfaces.


Asunto(s)
Potenciales de Acción , Materiales Biocompatibles , Interfaces Cerebro-Computador , Nanotubos , Neuronas/metabolismo , Platino (Metal) , Corteza Visual/fisiología , Animales , Estimulación Eléctrica , Electrodos , Macaca mulatta , Masculino , Ratones , Pájaros Cantores
14.
Stereotact Funct Neurosurg ; 97(4): 249-254, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31661697

RESUMEN

Trigeminal neuralgia (TN) is a debilitating but treatable disease. Classic TN has referable vascular compression of the trigeminal nerve, but rarely secondary sources of anatomic compression will present, including vascular malformations, aneurysms, or tumors. Understanding the etiology of the patients' symptoms leads to targeted treatment. Three patients presented with symptoms consistent with TN: shooting, paroxysmal pains in the distribution of the trigeminal nerve. However, imaging revealed no vascular conflict at the root entry zone of the trigeminal nerve. Instead, on the affected side Meckel's cave was absent. No other compressive mass lesion was identified. In all three cases, patients were offered both Gamma Knife Radiosurgery and surgical decompression of Meckel's cave. All 3 patients elected to proceed with stereotactic radiation and reported improvement in pain. Many cases of classic TN can be explained by neurovascular conflict at the trigeminal root entry zone, but secondary sources of compression or restriction along the nerve can result in similar symptomology. In this case series, an absent or hypoplastic ipsilateral Meckel's cave may have produced symptoms consistent with TN. Imaging with fine cuts through Meckel's cave is an important diagnostic tool.


Asunto(s)
Fosa Craneal Media/anomalías , Fosa Craneal Media/diagnóstico por imagen , Nervio Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/diagnóstico por imagen , Adulto , Fosa Craneal Media/cirugía , Descompresión Quirúrgica/métodos , Femenino , Humanos , Persona de Mediana Edad , Radiocirugia/métodos , Nervio Trigémino/cirugía , Neuralgia del Trigémino/cirugía
15.
Neurosurg Focus ; 46(3): E9, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835678

RESUMEN

Spinal cord injury (SCI) has been associated with a dismal prognosis-recovery is not expected, and the most standard interventions have been temporizing measures that do little to mitigate the extent of damage. While advances in surgical and medical techniques have certainly improved this outlook, limitations in functional recovery continue to impede clinically significant improvements. These limitations are dependent on evolving immunological mechanisms that shape the cellular environment at the site of SCI. In this review, we examine these mechanisms, identify relevant cellular components, and discuss emerging treatments in stem cell grafts and adjuvant immunosuppressants that target these pathways. As the field advances, we expect that stem cell grafts and these adjuvant treatments will significantly shift therapeutic approaches to acute SCI with the potential for more promising outcomes.


Asunto(s)
Rechazo de Injerto/prevención & control , Enfermedad Injerto contra Huésped/prevención & control , Inmunosupresores/uso terapéutico , Células Madre Pluripotentes Inducidas/trasplante , Células Precursoras de Oligodendrocitos/trasplante , Traumatismos de la Médula Espinal/terapia , Adyuvantes Inmunológicos , Aloinjertos , Animales , Basiliximab/uso terapéutico , Células Cultivadas , Ensayos Clínicos como Asunto , Ciclosporina/uso terapéutico , Femenino , Supervivencia de Injerto/inmunología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/inmunología , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Masculino , Ratones , Ácido Micofenólico/uso terapéutico , Células Precursoras de Oligodendrocitos/inmunología , Ratas , Tacrolimus/uso terapéutico , Trasplante Autólogo
16.
Neuroimage ; 176: 454-464, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678760

RESUMEN

Electrocorticography (ECoG), electrophysiological recording from the pial surface of the brain, is a critical measurement technique for clinical neurophysiology, basic neurophysiology studies, and demonstrates great promise for the development of neural prosthetic devices for assistive applications and the treatment of neurological disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the observation of neural dynamics from the cortical surface at the micrometer scale. While these technical capabilities may be enabling, the extent to which finer spatial scale recording enhances functionally relevant neural state inference is unclear. We examine this question by employing a high-density and low impedance 400 µm pitch microECoG (µECoG) grid to record neural activity from the human cortical surface during cognitive tasks. By applying machine learning techniques to classify task conditions from the envelope of high-frequency band (70-170Hz) neural activity collected from two study participants, we demonstrate that higher density grids can lead to more accurate binary task condition classification. When controlling for grid area and selecting task informative sub-regions of the complete grid, we observed a consistent increase in mean classification accuracy with higher grid density; in particular, 400 µm pitch grids outperforming spatially sub-sampled lower density grids up to 23%. We also introduce a modeling framework to provide intuition for how spatial properties of measurements affect the performance gap between high and low density grids. To our knowledge, this work is the first quantitative demonstration of human sub-millimeter pitch cortical surface recording yielding higher-fidelity state estimation relative to devices at the millimeter-scale, motivating the development and testing of µECoG for basic and clinical neurophysiology as well as towards the realization of high-performance neural prostheses.


Asunto(s)
Corteza Cerebral/fisiología , Electrocorticografía , Procesamiento de Imagen Asistido por Computador/métodos , Lenguaje , Aprendizaje Automático , Modelos Teóricos , Adulto , Corteza Cerebral/diagnóstico por imagen , Electrocorticografía/instrumentación , Electrocorticografía/métodos , Electrocorticografía/normas , Electrodos Implantados , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Microelectrodos , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología
17.
Microb Ecol ; 76(3): 610-624, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29470608

RESUMEN

Marine lakes are small bodies of landlocked seawater that are isolated from the open sea and have been shown to house numerous rare and unique taxa. The environmental conditions of the lakes are also characterised by lower pH and salinity and higher temperatures than generally found in the open sea. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach and a predictive metagenomic approach (PICRUSt) to examine bacterial composition and function in three distinct biotopes (sediment, water and the sponge species Biemna fortis) in three habitats (two marine lakes and the open sea) of the Berau reef system, Indonesia. Both biotope and habitat were significant predictors of higher taxon abundance and compositional variation. Most of the variation in operational taxonomic unit (OTU) composition was related to the biotope (42% for biotope alone versus 9% for habitat alone and 15% combined). Most OTUs were also restricted to a single biotope (1047 for B. fortis, 6120 for sediment and 471 for water). Only 98 OTUs were shared across all three biotopes. Bacterial communities from B. fortis, sediment and water samples were, however, also distinct in marine lake and open sea habitats. This was evident in the abundance of higher bacterial taxa. For example, the phylum Cyanobacteria was significantly more abundant in samples from marine lakes than from the open sea. This difference was most pronounced in the sponge B. fortis. In line with the compositional differences, there were pronounced differences in predicted relative gene count abundance among biotopes and habitats. Of particular interest was the predicted enrichment in B. fortis from the marine lakes for pathways including DNA replication and repair and the glutathione metabolism. This may facilitate adaptation of host and microbes to life in 'stressful' low pH, low salinity and/or high temperature environments such as those encountered in marine lakes.


Asunto(s)
Bacterias/aislamiento & purificación , Sedimentos Geológicos/microbiología , Lagos/microbiología , Poríferos/microbiología , Agua de Mar/microbiología , Animales , Archaea , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Arrecifes de Coral , Ecosistema , Indonesia , Filogenia
18.
Mol Ecol ; 25(18): 4645-59, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27480881

RESUMEN

There is growing concern that predicted changes to global ocean chemistry will interact with anthropogenic pollution to significantly alter marine microbial composition and function. However, knowledge of the compounding effects of climate change stressors and anthropogenic pollution is limited. Here, we used 16S and 18S rRNA (cDNA)-based activity profiling to investigate the differential responses of selected microbial taxa to ocean acidification and oil hydrocarbon contamination under controlled laboratory conditions. Our results revealed that a lower relative abundance of sulphate-reducing bacteria (Desulfosarcina/Desulfococcus clade) due to an adverse effect of seawater acidification and oil hydrocarbon contamination (reduced pH-oil treatment) may be coupled to changes in sediment archaeal communities. In particular, we observed a pronounced compositional shift and marked reduction in the prevalence of otherwise abundant operational taxonomic units (OTUs) belonging to the archaeal Marine Benthic Group B and Marine Hydrothermal Vent Group (MHVG) in the reduced pH-oil treatment. Conversely, the abundance of several putative hydrocarbonoclastic fungal OTUs was higher in the reduced pH-oil treatment. Sediment hydrocarbon profiling, furthermore, revealed higher concentrations of several alkanes in the reduced pH-oil treatment, corroborating the functional implications of the structural changes to microbial community composition. Collectively, our results advance the understanding of the response of a complex microbial community to the interaction between reduced pH and anthropogenic pollution. In future acidified marine environments, oil hydrocarbon contamination may alter the typical mixotrophic and k-/r-strategist composition of surface sediment microbiomes towards a more heterotrophic state with lower doubling rates, thereby impairing the ability of the ecosystem to recover from acute oil contamination events.


Asunto(s)
Archaea/clasificación , Contaminación por Petróleo , Agua de Mar/química , Bacterias Reductoras del Azufre/clasificación , Contaminantes Químicos del Agua/efectos adversos , Cambio Climático , Concentración de Iones de Hidrógeno
19.
Mol Ecol ; 24(2): 409-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25438824

RESUMEN

Archaea play crucial roles in a number of key ecological processes including nitrification and methanogenesis. Although several studies have been conducted on these organisms, the roles and dynamics of coral reef archaeal communities are still poorly understood, particularly in host and nonhost biotopes and in high (HMA) and low microbial abundance (LMA) sponges. Here, archaeal communities detected in six distinct biotopes, namely, sediment, seawater and four different sponge species Stylissa carteri, Stylissa massa, Xestospongia testudinaria and Hyrtios erectus from the Spermonde Archipelago, SW Sulawesi, Indonesia were investigated using 454-pyrosequencing of 16S rRNA genes (OTU cut-off 97%). Archaeal communities from sediment and sponges were dominated by Crenarchaeota, while the seawater community was dominated by Euryarchaeota. The biotope explained almost 75% of the variation in archaeal composition, with clear separation between microbial assemblages from sediment, X. testudinaria and H. erectus (HMA). In contrast, samples from seawater and both Stylissa species (LMA) showed considerable overlap in the ordination and, furthermore, shared most abundant OTUs with the exception of a single dominant OTU specifically enriched in both Stylissa species. Predicted functional gene content in archaeal assemblages also revealed significant differences among biotopes. Different ammonia assimilation strategies were exhibited by the archaeal communities: X. testudinaria, H. erectus and sediment archaeal communities were enriched for glutamate dehydrogenase with mixed specificity (NAD(P)(+) ) pathways, while archaeal planktonic communities were enriched for specific glutamate dehydrogenase (NADP(+) ) and glutamate synthase pathways. Archaeal communities in Stylissa had intermediate levels of enrichment. Our results indicate that archaeal communities in different biotopes have distinct ecophysiological roles.


Asunto(s)
Archaea/clasificación , Sedimentos Geológicos/microbiología , Poríferos/microbiología , Agua de Mar/microbiología , Animales , Archaea/genética , Biodiversidad , Arrecifes de Coral , ADN de Archaea/genética , Indonesia , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Glob Chang Biol ; 21(5): 1871-86, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25382269

RESUMEN

There is growing concern that modifications to the global environment such as ocean acidification and increased ultraviolet radiation may interact with anthropogenic pollutants to adversely affect the future marine environment. Despite this, little is known about the nature of the potential risks posed by such interactions. Here, we performed a multifactorial microcosm experiment to assess the impact of ocean acidification, ultraviolet B (UV-B) radiation and oil hydrocarbon contamination on sediment chemistry, the microbial community (composition and function) and biochemical marker response of selected indicator species. We found that increased ocean acidification and oil contamination in the absence of UV-B will significantly alter bacterial composition by, among other things, greatly reducing the relative abundance of Desulfobacterales, known to be important oil hydrocarbon degraders. Along with changes in bacterial composition, we identified concomitant shifts in the composition of oil hydrocarbons in the sediment and an increase in oxidative stress effects on our indicator species. Interestingly, our study identifies UV-B as a critical component in the interaction between these factors, as its presence alleviates harmful effects caused by the combination of reduced pH and oil pollution. The model system used here shows that the interactive effect of reduced pH and oil contamination can adversely affect the structure and functioning of sediment benthic communities, with the potential to exacerbate the toxicity of oil hydrocarbons in marine ecosystems.


Asunto(s)
Cambio Climático , Estuarios , Sedimentos Geológicos/microbiología , Microbiota/fisiología , Modelos Biológicos , Contaminación por Petróleo/efectos adversos , Secuencia de Bases , Cartilla de ADN/genética , Deltaproteobacteria/metabolismo , Deltaproteobacteria/efectos de la radiación , Hidrocarburos/análisis , Concentración de Iones de Hidrógeno , Microbiota/efectos de los fármacos , Datos de Secuencia Molecular , Portugal , Análisis de Secuencia de ADN , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA