Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Anal Chem ; 94(14): 5555-5565, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35343678

RESUMEN

This study aims at sensing in situ reactive oxygen and nitrogen species (RONS) and specifically superoxide anion (O2•-) in aqueous buffer solutions exposed to cold atmospheric plasmas (CAPs). CAPs were generated by ionizing He gas shielded with variable N2/O2 mixtures. Thanks to ultramicroelectrodes protected against the high electric fields transported by the ionization waves of CAPs, the production of superoxide and several RONS was electrochemically directly detected in liquids during their plasma exposure. Complementarily, optical emissive spectroscopy (OES) was used to study the plasma phase composition and its correlation with the chemistry in the exposed liquid. The specific production of O2•-, a biologically reactive redox species, was analyzed by cyclic voltammetry (CV), in both alkaline (pH 11), where the species is fairly stable, and physiological (pH 7.4) conditions, where it is unstable. To understand its generation with respect to the plasma chemistry, we varied the shielding gas composition of CAPs to directly impact on the RONS composition at the plasma-liquid interface. We observed that the production and accumulation of RONS in liquids, including O2•-, depends on the plasma composition, with N2-based shieldings providing the highest superoxide concentrations (few 10s of micromolar at most) and of its derivatives (hundreds of micromolar). In situ spectroscopic and electrochemical analyses provide a high resolution kinetic and quantitative understanding of the interactions between CAPs and physiological solutions for biomedical applications.


Asunto(s)
Gases em Plasma , Nitrógeno/química , Oxígeno , Fosfatos , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Superóxidos
2.
Anal Chem ; 91(13): 8002-8007, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31247715

RESUMEN

Many investigations are dedicated to the detection and quantification of reactive oxygen and nitrogen species (RONS), particularly when generated in liquids exposed to cold atmospheric plasmas (CAPs). CAPs are partially ionized gases that can be obtained by applying a high electric field to a gas. A challenge is to get better insights on the plasma-liquid interactions in order to understand the induced effects on different targets (liquid, cells, tissues, etc.). As RONS are biochemically reactive, the difficulty lies in finding efficient methods to get both dynamic and quantitative data. Herein, we developed an innovative setup aimed at performing an in situ electrochemical monitoring of redox species generated by CAPs in a physiological buffer (PBS, pH 7.4). The challenge was to apply millivolt-potential variations and measure nanoampere Faradaic currents in the presence of ionization waves generated by micropulsed electric fields of some 10 kV·cm-1 amplitude and ampere-transient currents. This was fulfilled by using dedicated working ultramicroelectrodes (Pt-black UMEs) and protecting them, as well as the reference and counter electrodes, within insulated-earthed containers. In this condition, we succeeded in performing both cyclic voltammetry and chronoamperometry in situ, with a resolution equivalent to working in a static solution (subnanoampere currents). Thus, we monitored the accumulation over time of species (H2O2, NO2-) generated by CAPs in PBS and observed the mean dynamic of RONS chemistry during and after plasma exposition, particularly through the detection of a short-living species.

3.
Phys Chem Chem Phys ; 20(14): 9198-9210, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29560996

RESUMEN

The understanding of plasma-liquid interactions is of major importance, not only in physical chemistry, chemical engineering and polymer science, but in biomedicine as well as to better control the biological processes induced on/in biological samples by Cold Atmospheric Plasmas (CAPs). Moreover, plasma-air interactions have to be particularly considered since these CAPs propagate in the ambient air. Herein, we developed a helium-based CAP setup equipped with a shielding-gas device, which allows the control of plasma-air interactions. Thanks to this device, we obtained specific diffuse CAPs, with the ability to propagate along several centimetres in the ambient air at atmospheric pressure. Optical Emission Spectroscopy (OES) measurements were performed on these CAPs during their interaction with a liquid medium (phosphate-buffered saline PBS 10 mM, pH 7.4) giving valuable information about the induced chemistry as a function of the shielding gas composition (variable O2/(O2 + N2) ratio). Several excited species were detected including N2+(First Negative System, FNS), N2(Second Positive System, SPS) and HO˙ radical. The ratios between nitrogen/oxygen excited species strongly depend on the O2/(O2 + N2) ratio. The liquid chemistry developed after CAP treatment was investigated by combining electrochemical and UV-visible absorption spectroscopy methods. We detected and quantified stable oxygen and nitrogen species (H2O2, NO2-, NO3-) along with Reactive Nitrogen Species (RNS) such as the peroxynitrite anion ONOO-. It appears that the RNS/ROS (Reactive Oxygen Species) ratio in the treated liquid depends also on the shielding gas composition. Eventually, the composition of the surrounding environment of CAPs seems to be crucial for the induced plasma chemistry and consequently, for the liquid chemistry. All these results demonstrate clearly that for physical, chemical and biomedical applications, which are usually achieved in ambient air environments, it is necessary to realize an effective control of plasma-air interactions.

4.
Sci Rep ; 14(1): 21969, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304669

RESUMEN

This research aims to explore more efficient machine learning (ML) algorithms with better performance for short-term forecasting. Up-to-date literature shows a lack of research on selecting practical ML algorithms for short-term forecasting in real-time industrial applications. This research uses a quantitative and qualitative mixed method combining two rounds of literature reviews, a case study, and a comparative analysis. Ten widely used ML algorithms are selected to conduct a comparative study of gas warning systems in a case study mine. We propose a new assessment visualization tool: a 2D space-based quadrant diagram can be used to visually map prediction error assessment and predictive performance assessment for tested algorithms. Overall, this visualization tool indicates that LR, RF, and SVM are more efficient ML algorithms with overall prediction performance for short-term forecasting. This research indicates ten tested algorithms can be visually mapped onto optimal (LR, RF, and SVM), efficient (ARIMA), suboptimal (BP-SOG, KNN, and Perceptron), and inefficient algorithms (RNN, BP_Resilient, and LSTM). The case study finds results that differ from previous studies regarding the ML efficiency of ARIMA, KNN, LR, LSTM, and SVM. This study finds different views on the prediction performance of a few paired algorithms compared with previous studies, including RF and LR, SVM and RF, KNN and ARIMA, KNN and SVM, RNN and ARIMA, and LSTM and SVM. This study also suggests that ARIMA, KNN, LR, and LSTM should be investigated further with additional prediction error assessments. Overall, no single algorithm can fit all applications. This study raises 20 valuable questions for further research.

5.
Bioelectrochemistry ; 154: 108551, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37677984

RESUMEN

Glassy carbon (GC) electrodes are widely used in electroanalytical applications especially in bioelectrochemistry. Their use starts with an efficient surface cleaning and activation protocol, mostly based on surface polishing steps. We studied the use of an oxygen plasma exposure of GC electrodes to replace common polishing procedures. The cyclic voltammetry (CV) responses of ferrocyanide and ferrocene-dimethanol were used to compare brand new, surface-polished and plasma-treated GC electrodes. Plasma treatment induces CV responses with improved features, close to theoretical values, as compared to other methods. The plasma effects were quasi-stable over a week when electrodes were stored in water, this being explained by increased surface energy and hydrophilicity. Furthermore, when electroreduction of diazonium was performed on GC electrodes, the surface blockade could be removed by the plasma. Thus, a short oxygen plasma treatment is prone to replace polishing protocols, that display person-dependent efficiency, in most of the experiments with GC electrodes.


Asunto(s)
Carbono , Oxígeno , Humanos , Electroquímica , Electrodos
6.
Sci Rep ; 9(1): 8671, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31209329

RESUMEN

Cold Atmospheric Plasma (CAP) is a novel promising tool developed in several biomedical applications such as cutaneous wound healing or skin cancer. Nevertheless, in vitro studies are lacking regarding to CAP effects on cellular actors involved in healthy skin healing and regarding to the mechanism of action. In this study, we investigated the effect of a 3 minutes exposure to CAP-Helium on human dermal fibroblasts and Adipose-derived Stromal Cells (ASC) obtained from the same tissue sample. We observed that CAP treatment did not induce cell death but lead to proliferation arrest with an increase in p53/p21 and DNA damages. Interestingly we showed that CAP treated dermal fibroblasts and ASC developed a senescence phenotype with p16 expression, characteristic morphological changes, Senescence-Associated ß-galactosidase expression and the secretion of pro-inflammatory cytokines defined as the Senescence-Associated Secretory Phenotype (SASP). Moreover this senescence phenotype is associated with a glycolytic switch and an increase in mitochondria content. Despite this senescence phenotype, cells kept in vitro functional properties like differentiation potential and immunomodulatory effects. To conclude, we demonstrated that two main skin cellular actors are resistant to cell death but develop a senescence phenotype while maintaining some functional characteristics after 3 minutes of CAP-Helium treatment in vitro.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Gases em Plasma/farmacología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Ciclo Celular/genética , Senescencia Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Helio/química , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Cultivo Primario de Células , Transducción de Señal , Piel/citología , Piel/metabolismo , Factores de Tiempo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Sci Rep ; 8(1): 16683, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420715

RESUMEN

The barrier functions of skin against water loss, microbial invasion and penetration of xenobiotics rely, in part, on the spatial distribution of the biomolecular constituents in the skin structure, particularly its horny layer (stratum corneum). However, all skin layers are important to describe normal and dysfunctional skin conditions, and to develop adapted therapies or skin care products. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) combined with scanning electron microscopy (SEM) was used to image the spatial distribution of a variety of molecular species, from stratum corneum down to dermis, in cross-section samples of human abdominal skin. The results demonstrate the expected localization of ceramide and saturated long-chain fatty acids in stratum corneum (SC) and cholesterol sulfate in the upper part of the viable epidermis. The localization of exogenous compounds is demonstrated by the detection and imaging of carvacrol (a constituent of oregano or thyme essential oil) and ceramide, after topical application onto ex vivo human skin. Carvacrol showed pronounced accumulation to triglyceride-containing structures in the deeper parts of dermis. In contrast, the exogenous ceramide was found to be localized in SC. Furthermore, the complementary character of this approach with classical ex vivo skin absorption analysis methods is demonstrated.


Asunto(s)
Lípidos/análisis , Piel/metabolismo , Dermis/metabolismo , Dermis/ultraestructura , Epidermis/metabolismo , Epidermis/ultraestructura , Ácidos Grasos/metabolismo , Humanos , Microscopía Electrónica de Rastreo , Piel/ultraestructura , Absorción Cutánea , Espectrometría de Masa de Ion Secundario
8.
Sci Rep ; 7: 41163, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120925

RESUMEN

Compelling evidence suggests that Cold Atmospheric Pressure Plasma (CAPP) has potential as a new cancer therapy. However, knowledge about cellular signaling events and toxicity subsequent to plasma treatment is still poorly documented. The aim of this study was to focus on the interaction between 3 different types of plasma (He, He-O2, He-N2) and human epithelial cell lines to gain better insight into plasma-cell interaction. We provide evidence that reactive oxygen and nitrogen species (RONS) are inducing cell death by apoptosis and that the proteasome, a major intracellular proteolytic system which is important for tumor cell growth and survival, is a target of (He or He-N2) CAPP. However, RONS are not the only actors involved in cell death; electric field and charged particles could play a significant role especially for He-O2 CAPP. By differential label-free quantitative proteomic analysis we found that CAPP triggers antioxidant and cellular defense but is also affecting extracellular matrix in keratinocytes. Moreover, we found that malignant cells are more resistant to CAPP treatment than normal cells. Taken together, our findings provide insight into potential mechanisms of CAPP-induced proteasome inactivation and the cellular consequences of these events.


Asunto(s)
Antioxidantes/farmacología , Fibroblastos/efectos de los fármacos , Helio/farmacología , Queratinocitos/efectos de los fármacos , Gases em Plasma/farmacología , Apoptosis , Línea Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Queratinocitos/metabolismo , Presión , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Proteoma/efectos de los fármacos , Proteoma/genética , Proteoma/metabolismo
9.
PLoS One ; 12(3): e0173618, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28358809

RESUMEN

Cold atmospheric pressure plasmas (CAPPs) are known to have bactericidal effects but the mechanism of their interaction with microorganisms remains poorly understood. In this study the bacteria Escherichia coli were used as a model and were exposed to CAPPs. Different gas compositions, helium with or without adjunctions of nitrogen or oxygen, were used. Our results indicated that CAPP induced bacterial death at decontamination levels depend on the duration, post-treatment storage and the gas mixture composition used for the treatment. The plasma containing O2 in the feeding gas was the most aggressive and showed faster bactericidal effects. Structural modifications of treated bacteria were observed, especially significant was membrane leakage and morphological changes. Oxidative stress caused by plasma treatment led to significant damage of E. coli. Biochemical analyses of bacterial macromolecules indicated massive intracellular protein oxidation. However, reactive oxygen and nitrogen species (RONS) are not the only actors involved in E. coli's death, electrical field and charged particles could play a significant role especially for He-O2 CAPP.


Asunto(s)
Descontaminación , Escherichia coli/efectos de los fármacos , Gases em Plasma/farmacología , Presión Atmosférica , Helio/farmacología , Viabilidad Microbiana/efectos de los fármacos , Nitrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
10.
PLoS One ; 10(8): e0133120, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26275141

RESUMEN

INTRODUCTION: Cold plasma is a partially ionized gas generated by an electric field at atmospheric pressure that was initially used in medicine for decontamination and sterilization of inert surfaces. There is currently growing interest in using cold plasma for more direct medical applications, mainly due to the possibility of tuning it to obtain selective biological effects in absence of toxicity for surrounding normal tissues,. While the therapeutic potential of cold plasma in chronic wound, blood coagulation, and cancer treatment is beginning to be documented, information on plasma/cell interaction is so far limited and controversial. METHODS AND RESULTS: Using normal primary human fibroblast cultures isolated from oral tissue, we sought to decipher the effects on cell behavior of a proprietary cold plasma device generating guided ionization waves carried by helium. In this model, cold plasma treatment induces a predominantly necrotic cell death. Interestingly, death is not triggered by a direct interaction of the cold plasma with cells, but rather via a transient modification in the microenvironment. We show that modification of the microenvironment redox status suppresses treatment toxicity and protects cells from death. Moreover, necrosis is not accidental and seems to be an active response to an environmental cue, as its execution can be inhibited to rescue cells. CONCLUSION: These observations will need to be taken into account when studying in vitro plasma/cell interaction and may have implications for the design and future evaluation of the efficacy and safety of this new treatment strategy.


Asunto(s)
Presión Atmosférica , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Necrosis/inducido químicamente , Gases em Plasma/farmacología , Apoptosis/efectos de los fármacos , Células Cultivadas , Humanos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA