Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cereb Cortex ; 33(6): 2470-2484, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35650684

RESUMEN

The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.


Asunto(s)
Ansiolíticos , Ansiedad , Proteínas de Unión a Ácidos Grasos , Corteza Prefrontal , Receptor Cannabinoide CB2 , Animales , Ratas , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Ansiolíticos/metabolismo , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Proteínas de Unión a Ácidos Grasos/metabolismo , Miedo/efectos de los fármacos , Miedo/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/metabolismo
2.
Bioorg Chem ; 129: 106184, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36244323

RESUMEN

Fatty acid binding protein 5 (FABP5) is a highly promising target for the development of analgesics as its inhibition is devoid of CB1R-dependent side-effects. The design and discovery of highly potent and FABP5-selective truxillic acid (TA) monoesters (TAMEs) is the primary aim of the present study. On the basis of molecular docking analysis, ca. 2,000 TAMEs were designed and screened in silico, to funnel down to 55 new TAMEs, which were synthesized and assayed for their affinity (Ki) to FABP5, 3 and 7. The SAR study revealed that the introduction of H-bond acceptors to the far end of the 1,1'-biphenyl-3-yl and 1,1'-biphenyl-2-yl ester moieties improved the affinity of α-TAMEs to FABP5. Compound γ-3 is the first γ-TAME, demonstrating a high affinity to FABP5 and competing with α-TAMEs. We identified the best 20 TAMEs based on the FABP5/3 selectivity index. The clear front runner is α-16, bearing a 2­indanyl ester moiety. In sharp contrast, no ε-TAMEs made the top 20 in this list. However, α-19 and ε-202, have been identified as potent FABP3-selective inhibitors for applications related to their possible use in the protection of cardiac myocytes and the reduction of α-synuclein accumulation in Parkinson's disease. Among the best 20 TAMEs selected based on the affinity to FABP7, 13 out of 20 TAMEs were found to be FABP7-selective, with α-21 as the most selective. This study identified several TAMEs as FABP7-selective inhibitors, which would have potentially beneficial therapeutic effects in diseases such as Down's syndrome, schizophrenia, breast cancer, and astrocytoma. We successfully introduced the α-TA monosilyl ester (TAMSE)-mediated protocol to dramatically improve the overall yields of α-TAMEs. α-TAMSEs with TBDPS as the silyl group is isolated in good yields and unreacted α-TA/ α-MeO-TA, as well as disilyl esters (α-TADSEs) are fully recycled. Molecular docking analysis provided rational explanations for the observed binding affinity and selectivity of the FABP3, 5 and 7 inhibitors, including their α, γ and ε isomers, in this study.


Asunto(s)
Analgésicos , Ciclobutanos , Proteínas de Unión a Ácidos Grasos , Analgésicos/química , Analgésicos/farmacología , Ésteres/farmacología , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Ciclobutanos/química , Ciclobutanos/farmacología , Relación Estructura-Actividad
3.
Prostate ; 80(1): 88-98, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31661167

RESUMEN

BACKGROUND: Prostate cancer (PCa) remains the second leading cause of cancer-related death among men. Taxanes, such as docetaxel and cabazitaxel are utilized in standard treatment regimens for chemotherapy naïve castration-resistant PCa. However, tumors often develop resistance to taxane chemotherapeutics, highlighting a need to identify additional therapeutic targets. Fatty acid-binding protein 5 (FABP5) is an intracellular lipid carrier whose expression is upregulated in metastatic PCa and increases cell growth, invasion, and tumor formation. Here, we assessed whether FABP5 inhibitors synergize with semi-synthetic taxanes to induce cytotoxicity in vitro and attenuate tumor growth in vivo. METHODS: PC3, DU-145, and 22Rv1 PCa cells were incubated with FABP5 inhibitors Stony Brook fatty acid-binding protein inhibitor 102 (SBFI-102) or SBFI-103 in the presence or absence of docetaxel or cabazitaxel, and cytotoxicity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay. Cytotoxicity of SBFI-102 and SBFI-103 was also evaluated in noncancerous cells. For the in vivo studies, PC3 cells were subcutaneously implanted into BALB/c nude mice, which were subsequently treated with FABP5 inhibitors, docetaxel, or a combination of both. RESULTS: SBFI-102 and SBFI-103 produced cytotoxicity in the PCa cells. Coincubation of the PCa cells with FABP5 inhibitors and docetaxel or cabazitaxel produced synergistic cytotoxic effects in vitro. Treatment of mice with FABP5 inhibitors reduced tumor growth and a combination of FABP5 inhibitors with a submaximal dose of docetaxel reduced tumor growth to a larger extent than treatment with each drug alone. CONCLUSIONS: FABP5 inhibitors increase the cytotoxic and tumor-suppressive effects of taxanes in PCa cells. The ability of these drugs to synergize could permit more efficacious antitumor activity while allowing for dosages of docetaxel or cabazitaxel to be lowered, potentially decreasing taxane-resistance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Docetaxel/farmacología , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Taxoides/farmacología , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Docetaxel/administración & dosificación , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células PC-3 , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Taxoides/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Psychopharmacology (Berl) ; 241(1): 119-138, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37747506

RESUMEN

RATIONALE: The endocannabinoid (eCB) system critically controls anxiety and fear-related behaviours. Anandamide (AEA), a prominent eCB ligand, is a hydrophobic lipid that requires chaperone proteins such as Fatty Acid Binding Proteins (FABPs) for intracellular transport. Intracellular AEA transport is necessary for degradation, so blocking FABP activity increases AEA neurotransmission. OBJECTIVE: To investigate the effects of a novel FABP5 inhibitor (SBFI-103) in the basolateral amygdala (BLA) on anxiety and fear memory. METHODS: We infused SBFI-103 (0.5 µg-5 µg) to the BLA of adult male Sprague Dawley rats and ran various anxiety and fear memory behavioural assays, neurophysiological recordings, and localized molecular signaling analyses. We also co-infused SBFI-103 with the AEA inhibitor, LEI-401 (3 µg and 10 µg) to investigate the potential role of AEA in these phenomena. RESULTS: Acute intra-BLA administration of SBFI-103 produced strong anxiolytic effects across multiple behavioural tests. Furthermore, animals exhibited acute and long-term accelerated associative fear memory extinction following intra-BLA FABP5 inhibition. In addition, BLA FABP5 inhibition induced strong modulatory effects on putative PFC pyramidal neurons along with significantly increased gamma oscillation power. Finally, we observed local BLA changes in the phosphorylation activity of various anxiety- and fear memory-related molecular biomarkers in the PI3K/Akt and MAPK/Erk signaling pathways. At all three levels of analyses, we found the functional effects of SBFI-103 depend on availability of the AEA ligand. CONCLUSIONS: These findings demonstrate a novel intra-BLA FABP5 signaling mechanism regulating anxiety and fear memory behaviours, neuronal activity states, local anxiety-related molecular pathways, and functional AEA modulation.


Asunto(s)
Ansiolíticos , Complejo Nuclear Basolateral , Animales , Masculino , Ratas , Amígdala del Cerebelo/metabolismo , Ansiolíticos/farmacología , Ansiolíticos/metabolismo , Extinción Psicológica , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/farmacología , Miedo/fisiología , Ligandos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Ratas Sprague-Dawley
5.
mBio ; 14(2): e0033923, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36877042

RESUMEN

Invasive fungal infections are a leading cause of death in immunocompromised patients. Current therapies have several limitations, and innovative antifungal agents are critically needed. Previously, we identified the fungus-specific enzyme sterylglucosidase as essential for pathogenesis and virulence of Cryptococcus neoformans and Aspergillus fumigatus (Af) in murine models of mycoses. Here, we developed Af sterylglucosidase A (SglA) as a therapeutic target. We identified two selective inhibitors of SglA with distinct chemical scaffolds that bind in the active site of SglA. Both inhibitors induce sterylglucoside accumulation and delay filamentation in Af and increase survival in a murine model of pulmonary aspergillosis. Structure-activity relationship (SAR) studies identified a more potent derivative that enhances both in vitro phenotypes and in vivo survival. These findings support sterylglucosidase inhibition as a promising antifungal approach with broad-spectrum potential. IMPORTANCE Invasive fungal infections are a leading cause of death in immunocompromised patients. Aspergillus fumigatus is a fungus ubiquitously found in the environment that, upon inhalation, causes both acute and chronic illnesses in at-risk individuals. A. fumigatus is recognized as one of the critical fungal pathogens for which a substantive treatment breakthrough is urgently needed. Here, we studied a fungus-specific enzyme, sterylglucosidase A (SglA), as a therapeutic target. We identified selective inhibitors of SglA that induce accumulation of sterylglucosides and delay filamentation in A. fumigatus and increase survival in a murine model of pulmonary aspergillosis. We determined the structure of SglA, predicted the binding poses of these inhibitors through docking analysis, and identified a more efficacious derivative with a limited SAR study. These results open several exciting avenues for the research and development of a new class of antifungal agents targeting sterylglucosidases.


Asunto(s)
Aspergilosis , Infecciones Fúngicas Invasoras , Aspergilosis Pulmonar , Animales , Ratones , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Modelos Animales de Enfermedad , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Aspergilosis Pulmonar/tratamiento farmacológico
7.
Nat Commun ; 12(1): 5885, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620873

RESUMEN

Pathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3ß-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3ß-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1's substrate specificity and enable the rational design of antifungal agents targeting Sgl1.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Proteínas Fúngicas/química , Proteínas Fúngicas/efectos de los fármacos , Animales , Linfocitos T CD4-Positivos , Dominio Catalítico , Criptococosis , Cryptococcus neoformans/genética , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Ergosterol , Femenino , Proteínas Fúngicas/genética , Glucosidasas/química , Glucosidasas/efectos de los fármacos , Glucosidasas/genética , Ensayos Analíticos de Alto Rendimiento , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular
8.
Eur J Med Chem ; 154: 233-252, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29803996

RESUMEN

Fatty acid binding proteins (FABPs) serve as critical modulators of endocannabinoid signaling by facilitating the intracellular transport of anandamide and whose inhibition potentiates anandamide signaling. Our previous work has identified a novel small-molecule FABP inhibitor, α-truxillic acid 1-naphthyl monoester (SB-FI-26, 3) that has shown efficacy as an antinociceptive and anti-inflammatory agent in rodent models. In the present work, we have performed an extensive SAR study on a series of 3-analogs as novel FABP inhibitors based on computer-aided inhibitor drug design and docking analysis, chemical synthesis and biological evaluations. The prediction of binding affinity of these analogs to target FABP3, 5 and 7 isoforms was performed using the AutoDock 4.2 program, using the recently determined co-crystal structures of 3 with FABP5 and FABP7. The compounds with high docking scores were synthesized and evaluated for their activities using a fluorescence displacement assay against FABP3, 5 and 7. During lead optimization, compound 3l emerged as a promising compound with the Ki value of 0.21 µM for FABP 5, 4-fold more potent than 3 (Ki, 0.81 µM). Nine compounds exhibit similar or better binding affinity than 3, including compounds 4b (Ki, 0.55 µM) and 4e (Ki, 0.68 µM). Twelve compounds are selective for FABP5 and 7 with >10 µM Ki values for FABP3, indicating a safe profile to avoid potential cardiotoxicity concerns. Compounds 4f, 4j and 4k showed excellent selectivity for FABP5 and would serve as other new lead compounds. Compound 3a possessed high affinity and high selectivity for FABP7. Compounds with moderate to high affinity for FABP5 displayed antinociceptive effects in mice while compounds with low FABP5 affinity lacked in vivo efficacy. In vivo pain model studies in mice revealed that exceeding hydrophobicity significantly affects the efficacy. Thus, among the compounds with high affinity to FABP5 in vitro, the compounds with moderate hydrophobicity were identified as promising new lead compounds for the next round of optimization, including compounds 4b and 4j. For select cases, computational analysis of the observed SAR, especially the selectivity of new inhibitors to particular FABP isoforms, by comparing docking poses, interaction map, and docking energy scores has provided useful insights.


Asunto(s)
Analgésicos/farmacología , Ciclobutanos/farmacología , Ésteres/farmacología , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Analgésicos/síntesis química , Analgésicos/química , Animales , Diseño Asistido por Computadora , Ciclobutanos/síntesis química , Ciclobutanos/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ésteres/síntesis química , Ésteres/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
9.
Isr J Psychiatry Relat Sci ; 54(1): 6-16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28857753

RESUMEN

BACKGROUND: The uneven progression of mental health funding in the United States, and the way that the funding climate seems to be influenced by local and regional differences, raises the issue of what factors, including stigma, may impact mental health funding decisions. Criticisms that mental health stigma research is too individually-focused have led researchers to consider how broader, macro-level forms of stigma - such as structural stigma - intersect with micro-level forms of individual stigma. While some studies suggest that macro and micro stigma levels are distinct processes, other studies suggest a more synergistic relationship between structural and individual stigma. METHOD: Participants in the current study (N = 951; national, convenience sample of the U.S.) completed a hypothetical mental health resource allocation task (a measure of structural discrimination). We then compared participants' allocation of resources to mental health to participants' endorsement of negative stereotypes, beliefs about recovery and treatment, negative attributions, intended social distancing, microaggressions, and help-seeking (measures of individual stigma). RESULTS: Negative stereotyping, help-seeking self-stigma, and intended social distancing behaviors were weakly but significantly negatively correlated with allocating funds to mental health programs. More specifically, attributions of blame and anger were positively correlated to funding for vocational rehabilitation; attributions of dangerousness and fear were negatively correlated to funding for supported housing and court supervision and outpatient commitment; and attributions of anger were negatively correlated to funding for inpatient commitment and hospitalization. CONCLUSIONS: Individual stigma and sociodemographic factors appear to only partially explain structural stigma decisions. Future research should assess broader social and contextual factors, in addition to other beliefs and worldviews (e.g., allocation preference questionnaire, economic beliefs).


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Trastornos Mentales/economía , Servicios de Salud Mental/economía , Estigma Social , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estados Unidos , Adulto Joven
10.
J Clin Endocrinol Metab ; 98(1): E40-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23150678

RESUMEN

CONTEXT: Type 1 diabetes is an insulin-resistant state, but it is less clear which tissues are affected. Our previous report implicated skeletal muscle and liver insulin resistance in people with type 1 diabetes, but this occurred independently of generalized, visceral, or ectopic fat. OBJECTIVE: The aim of the study was to measure adipose tissue insulin sensitivity and plasma triglyceride composition in individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose. DESIGN, PATIENTS, AND METHODS: Fifty subjects (25 individuals with type 1 diabetes and 25 controls without) were studied. After 3 d of dietary control and overnight insulin infusion, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m(2) · min. Infusions of [1,1,2,3,3-(2)H(2)]glycerol and [1-(13)C]palmitate were used to quantify lipid metabolism. RESULTS: Basal glycerol and palmitate rates of appearance were similar between groups, decreased more in control subjects during the first two stages of the clamp, and similarly suppressed during the highest insulin dose. The concentration of insulin required for 50% inhibition of lipolysis was twice as high in individuals with type 1 diabetes. Plasma triglyceride saturation was similar between groups, but palmitoleic acid in plasma triglyceride was inversely related to adipocyte insulin sensitivity. Unesterified palmitoleic acid in plasma was positively related to insulin sensitivity in controls, but not in individuals with type 1 diabetes. CONCLUSIONS: Adipose tissue insulin resistance is a significant feature of type 1 diabetes. Palmitoleic acid is not related to insulin sensitivity in type 1 diabetes, as it was in controls, suggesting a novel mechanism for insulin resistance in this population.


Asunto(s)
Adipocitos/efectos de los fármacos , Diabetes Mellitus Tipo 1/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Resistencia a la Insulina , Insulina/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Adulto , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Ácidos Grasos Monoinsaturados/administración & dosificación , Ácidos Grasos Monoinsaturados/sangre , Femenino , Técnica de Clampeo de la Glucosa , Glicerol/sangre , Humanos , Insulina/administración & dosificación , Insulina/sangre , Insulina/farmacología , Resistencia a la Insulina/fisiología , Masculino , Persona de Mediana Edad , Triglicéridos/sangre , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA