Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Prostaglandins Other Lipid Mediat ; 172: 106818, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38340978

RESUMEN

Platelet-activating factor (PAF) plays a significant role in several leucocyte functions, including platelet aggregation and inflammation. Additionally, PAF has a role in the behavioral and physiological changes in mammals. However, the effect of PAF has not been well studied in birds. Therefore, the study aimed to determine if PAF affects feeding behavior, voluntary activity, cloacal temperature, and feed passage through the digestive tract in chicks (Gallus gallus). We also studied the involvement of PAF in the innate immune system induced by lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria. Both intraperitoneal (IP) and intracerebroventricular (ICV) injections of PAF significantly decreased food intake. IP injection of PAF significantly decreased voluntary activity and slowed the feed passage from the crop, whereas ICV injection had no effect. Conversely, ICV injection of PAF significantly increased the cloacal temperature, but IP injection had no effect. The IP injection of LPS significantly reduced the mRNA expression of lysophosphatidylcholine acyltransferase 2, an enzyme responsible for PAF production in the heart and pancreas. On the other hand, LPS significantly increased the mRNA expression of the PAF receptor in the peripheral organs. The present study shows that PAF influences behavioral and physiological responses and is related to the response against bacterial infections in chicks.


Asunto(s)
Temperatura Corporal , Pollos , Cloaca , Buche de las Aves , Ingestión de Alimentos , Factor de Activación Plaquetaria , Animales , Masculino , Temperatura Corporal/efectos de los fármacos , Cloaca/efectos de los fármacos , Cloaca/fisiología , Buche de las Aves/efectos de los fármacos , Buche de las Aves/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Lipopolisacáridos/farmacología , Factor de Activación Plaquetaria/farmacología , Factor de Activación Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38147959

RESUMEN

Zymosan is a fungi-derived pathogen-associated molecular pattern. It activates the immune system and induces the reduction of feed passage rate in the gastrointestinal tract of vertebrates including birds. However, the mechanism mediating the zymosan-induced inhibition of feed passage in the gastrointestinal tract remains unknown. Since the medulla oblongata regulates the digestive function, it is plausible that the medulla oblongata is involved in the zymosan-induced inhibition of feed passage. The present study was performed to identify the genes that were affected by zymosan within the medulla oblongata of chicks (Gallus gallus) using an RNA sequencing approach. We found that mRNAs of several bioactive molecules including neuropeptide Y (NPY) were increased with an intraperitoneal (IP) injection of zymosan. The increase of mRNA expression of NPY in the medulla oblongata was also observed after the IP injection of lipopolysaccharide, derived from gram-negative bacteria. These results suggest that medullary NPY is associated with physiological changes during fungal and bacterial infection. Furthermore, we found that intracerebroventricular injection of NPY and its receptor agonists reduced the feed passage from the crop. Additionally, the injection of NPY reduced the feed passage from the proventriculus to lower digestive tract. NPY also suppressed the activity of duodenal activities of amylase and trypsin. The present study suggests that fungi- and bacteria-induced activation of the immune system may activate the NPY neurons in the medulla oblongata and thereby reduce the digestive function in chicks.


Asunto(s)
Lipopolisacáridos , Neuropéptido Y , Animales , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Lipopolisacáridos/farmacología , Zimosan/farmacología , Pollos/metabolismo , Bulbo Raquídeo/metabolismo , Tracto Gastrointestinal/metabolismo
3.
Amino Acids ; 55(2): 183-192, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36436082

RESUMEN

Brain amino acid metabolism has been reported to regulate body temperature, feeding behavior and stress response. Central injection of taurine induced hypothermic and anorexigenic effects in chicks. However, it is still unknown how the amino acid metabolism is influenced by the central injection of taurine. Therefore, the objective of this study was to investigate the changes in brain and plasma free amino acids following central injection of taurine. Five-day-old male Julia layer chicks (n = 10) were subjected to intracerebroventricular (ICV) injection with saline or taurine (5 µmol/10 µL). Central taurine increased tryptophan concentrations in the diencephalon, and decreased tyrosine in the diencephalon, brainstem, cerebellum, telencephalon and plasma at 30 min post-injection. Taurine was increased in all the brain parts after ICV taurine. Although histidine and cystathionine concentrations were increased in the diencephalon and brainstem, several amino acids such as isoleucine, arginine, methionine, phenylalanine, glutamic acid, asparagine, proline, and alanine were reduced following central injection of taurine. All amino acid concentrations were decreased in the plasma after ICV taurine. In conclusion, central taurine quickly changes free amino acid concentrations in the brain and plasma, which may have a role in thermoregulation, food intake and stress response in chicks.


Asunto(s)
Aminoácidos , Taurina , Masculino , Animales , Aminoácidos/metabolismo , Taurina/farmacología , Encéfalo/metabolismo , Prolina/metabolismo , Arginina/metabolismo , Pollos/metabolismo
4.
Gen Comp Endocrinol ; 328: 114101, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940317

RESUMEN

Bradykinin is a well-studied bioactive peptide associated with several physiological functions, including vasodilation and inflammation, in mammals. However, its avian homolog, ornithokinin, has received less research attention in birds. Therefore this study aimed to investigate the effect of intraperitoneal (IP) and intracerebroventricular (ICV) injections of ornithokinin on feeding behavior, cloacal temperature, voluntary activity, crop emptying rate, and blood constituents in chicks (Gallus gallus). We also investigated the effect of lipopolysaccharide (LPS), a cell wall component of gram-negative bacteria, on ornithokinin-associated gene expression was also investigated to determine whether activation of the ornithokinin system is induced by bacterial infection. Both IP and ICV injections of ornithokinin significantly decreased feed intake, cloacal temperature, voluntary activity, and crop emptying rate in chicks, but they did not affect the plasma concentration of corticosterone. Additionally, LPS significantly increased the expression of ornithokinin B2 receptor mRNA in several organs. Hence, ornithokinin is associated with a range of physiological responses in chicks and may be related to their response to bacterial infection.


Asunto(s)
Pollos , Corticosterona , Animales , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Pollos/fisiología , Ingestión de Alimentos , Conducta Alimentaria , Inyecciones Intraventriculares , Lipopolisacáridos/farmacología , Mamíferos , ARN Mensajero , Temperatura
5.
Artículo en Inglés | MEDLINE | ID: mdl-35417747

RESUMEN

Nitric oxide (NO) is a gaseous bioactive molecule associated with many physiological functions including vasodilation and neurotransmission. NO also plays an important role in immune responses during viral infections in mammals. However, there is a paucity of knowledge regarding the involvement of NO in viral infections in birds. Therefore, the purpose of the present study was to determine if intraperitoneal (IP) injection of poly I:C and R848 (resiquimod), which are analogues of virus component, affects NO production in chicks (Gallus gallus) as a bird model. The involvement of inducible NO synthase (iNOS) in poly I:C- and R848-induced anorexia and corticosterone release was also investigated. These virus analogues significantly increased plasma NO metabolites (NOx) concentrations. IP injection of poly I:C and R848 significantly increased iNOS mRNA expression in several organs including the liver. On the other hand, poly I:C and R848 significantly decreased mRNA expressions of endothelial NOS and neural NOS in several organs, indicating that induction of iNOS might be responsible for increased NOx levels in plasma. This finding was further confirmed by using a selective iNOS inhibitor, S-methylisothiourea sulfate (SMT), which abolished the poly I:C- and R848-induced increase in plasma NOx concentration. In addition, SMT partly attenuated the poly I:C- and R848-induced increase in plasma corticosterone concentration, suggesting that corticosterone release induced by these virus analogues may be partly mediated by iNOS. Collectively, the present results suggest that viral infections facilitate NO production by inducing iNOS. The liver would play an important role in the NO production because the response in iNOS mRNA expression to poly I:C and R848 was remarkable. The present results also suggest that NO is associated with corticosterone release in birds under viral infection.


Asunto(s)
Óxido Nítrico Sintasa , Óxido Nítrico , Animales , Pollos/metabolismo , Corticosterona , Mamíferos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Poli I-C/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-35918017

RESUMEN

Infections frequently accompany with non-specific symptoms such as anorexia and hyperthermia. In addition, there may be unpleasant sensations such as visceral discomfort during infection. Lipopolysaccharide (LPS), a Gram-negative bacteria cell wall component, is known to induce the unpleasant sensation of conditioned taste aversion in mammals. However, the relationship between unpleasant sensations and changes in behavior and physiological conditions has not been investigated extensively in birds. Lithium chloride (LiCl) is a compound that induces unpleasant sensations, including visceral discomfort, although its effects on behavior and physiological conditions have also not been investigated extensively in birds. Thus, the present study was aimed to investigate the effect of an intraperitoneal (IP) injection of LiCl on conditioned visual aversion, food intake, cloacal temperature, voluntary activity, crop-emptying rate, and blood constituents in chicks (Gallus gallus). We also examined the effect of IP injections of LPS and zymosan, a cell wall component of fungus, on conditioned visual aversion formation. First, IP injection of LiCl was confirmed to induce conditioned visual aversion in chicks. An IP injection of LiCl significantly decreased food intake, voluntary activity, and crop-emptying rate but did not affect the temperature. In addition, the injection of LiCl significantly increased plasma corticosterone concentration, indicating that LiCl serves as a stressor in chicks. Finally, IP injections of LPS and zymosan were found to induce conditioned visual aversion in chicks. Collectively, these results suggest that LiCl induces conditioned aversion, anorexia, hypoactivity, and inhibition of crop-emptying in chicks. In addition, LPS and zymosan would induce unpleasant sensations in chicks.


Asunto(s)
Pollos , Cloruro de Litio , Animales , Anorexia , Pollos/fisiología , Ingestión de Alimentos , Lipopolisacáridos/farmacología , Litio/farmacología , Cloruro de Litio/farmacología , Mamíferos , Gusto , Temperatura , Zimosan/farmacología
7.
Prostaglandins Other Lipid Mediat ; 156: 106574, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34102274

RESUMEN

Central administration of prostaglandin E2 (PGE2) is associated with potent anorexia in rodents and chicks, although hypothalamic mechanisms are not fully understood. The objective of the present study was to identify hypothalamic nuclei and appetite-related factors that are involved in this anorexigenic effect, using chickens as a model. Intracerebroventricular injection of 2.5, 5, and 10 nmol of PGE2 suppressed food and water intake in broiler chicks in a dose-dependent manner. c-Fos immunoreactivity was increased in the paraventricular nucleus (PVN) at 60 min post injection of 5 nmol of PGE2. Under the same treatment condition, hypothalamic expression of melanocortin receptor 3 and ghrelin mRNAs increased, whereas neuropeptide Y receptor sub-type 5 and tropomyosin receptor kinase B (TrkB) mRNAs decreased in PGE2-treated chicks. In the PVN, chicks injected with PGE2 had more brain-derived neurotrophic factor (BDNF), ghrelin, and c-Fos mRNA but less corticotrophin-releasing factor receptor 1 (CRFR1), CRFR2, and TrkB mRNA expression. In conclusion, PGE2 injection resulted in decreased food and water intake that likely involves BDNF and ghrelin originating in the PVN. Because the anorexigenic effect is so potent and hypothalamic mechanisms are similar in chickens and rodents, a greater understanding of the role of PGE2 in acute appetite regulation may have implications for treating eating and metabolic disorders in humans.


Asunto(s)
Anorexia
8.
Artículo en Inglés | MEDLINE | ID: mdl-34119636

RESUMEN

Ferulic acid (FA) is a phenolic acid found within the plant cell wall that has physiological benefits as an antioxidant. Although metabolic benefits of FA supplementation are described, lacking are reports of effects on appetite regulation. Thus, our objective was to determine if FA affects food or water intake, using chicks as a model. At 4 days post-hatch, broiler chicks were intraperitoneally injected with 0 (vehicle), 12.5, 25, or 50 mg/kg of FA. Chicks treated with 50 mg/kg of FA consumed 70% less food than controls at 30 min post-injection, and the effect dissipated thereafter. Water intake was not affected at any time. In a behavior analysis, FA-treated chicks defecated fewer times than vehicle-injected chicks, while other behaviors were not affected. There was an increase in c-Fos immunoreactivity within the hypothalamic arcuate nucleus (ARC) of FA-treated chicks, and no differences were detected in other nuclei. mRNA abundance was measured in the whole hypothalamus and the ARC. There was decreased hypothalamic galanin, ghrelin, melanocortin receptor 3, and pro-opiomelanocortin (POMC) mRNA in FA-treated chicks. Within the ARC, there was an increase in c-Fos mRNA and a decrease in POMC mRNA in response to FA. It is likely that the mechanism responsible for mediating FA's transient effects on food intake originates within the ARC, possibly involving POMC. A greater understanding of the short-term, mild appetite-suppressive effects of FA may have applications to treating eating disorders and modulating food intake in animal models of obesity.


Asunto(s)
Pollos/metabolismo , Ácidos Cumáricos/química , Fitoquímicos/química , Animales , Animales Recién Nacidos , Anorexia/inducido químicamente , Apoptosis , Apetito , Regulación del Apetito , Núcleo Arqueado del Hipotálamo/metabolismo , Conducta Animal , Ácidos Cumáricos/farmacología , Modelos Animales de Enfermedad , Ingestión de Líquidos/efectos de los fármacos , Galanina/metabolismo , Ghrelina/metabolismo , Hipotálamo/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor de Melanocortina Tipo 3/metabolismo , Transducción de Señal
9.
Artículo en Inglés | MEDLINE | ID: mdl-34023535

RESUMEN

Neuropeptide AF (NPAF) decreases food and water intake in birds and food intake in mammals. In this study, the objective was to determine the effects of centrally administered NPAF on food and water intake, hypothalamic c-Fos immunoreactivity and hypothalamic mRNA abundance of appetite-regulating factors in Japanese quail (Coturnix japonica). Seven days post hatch, 6 h fasted quail were intracerebroventricularly (ICV) injected with 0 (vehicle), 4, 8, or 16 nmol of NPAF and food and water intake were measured at 30 min intervals for 180 min. In Experiment 1, chicks which received 4, 8, and 16 nmol ICV NPAF had reduced food intake for 120, 60 and 180 min following injection, respectively, and reduced water intake during the entire 180 min observation. In Experiment 2, there was increased c-Fos immunoreactivity in the paraventricular nucleus, the ventromedial nucleus of the hypothalamus, and the dorsomedial hypothalamic nucleus in NPAF-injected quail. In Experiment 3, ICV NPAF was associated with decreased corticotropin-releasing factor mRNA, and an increase in hypothalamic proopiomelanocortin and melanocortin receptor 4 mRNA. These results demonstrate that central NPAF suppresses food and water intake in quail, effects that are likely mediated via the melanocortin system in the hypothalamus.


Asunto(s)
Apetito/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Melanocortinas/metabolismo , Oligopéptidos/administración & dosificación , Animales , Anorexia/inducido químicamente , Hormona Liberadora de Corticotropina/metabolismo , Coturnix/metabolismo , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Infusiones Intraventriculares , Núcleo Hipotalámico Paraventricular , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal
10.
Artículo en Inglés | MEDLINE | ID: mdl-34419574

RESUMEN

Zymosan, a component of yeast cell walls, reduces feed passage through the digestive tract in chicks (Gallus gallus), although the mechanism mediating this effect is poorly understood. Nitric oxide (NO) is associated with a variety of biological actions including effects on the immune system. In addition, it has been suggested that NO is involved in relaxation of the digestive tract and affects feed passage in mammals. It is therefore possible that NO might be related to zymosan-induced reduction of feed passage in chicks. However, the role of NO on the effect of zymosan feed passage has not been clarified yet. Thus, the purpose of the present study was to investigate whether NO is associated with zymosan-induced alteration of feed passage in chicks. Intraperitoneal (IP) injection of zymosan significantly increased plasma nitrate and nitrite (NOx) concentrations at 6 h after injection. Zymosan-induced elevation of plasma NOx concentration was abolished by co-injection of S-methylisothiourea (SMT), a selective inhibitor for inducible NO synthase (iNOS), indicating that zymosan facilitated the induction of iNOS. Furthermore, because zymosan increased iNOS mRNA expression in the digestive tract, NO is likely associated with the effect of zymosan on the digestive tract. IP injection of NO donors significantly decreased crop emptying rate, suggesting that NO functions as an inhibitor of crop emptying. This result implied that zymosan stimulates NO production by the induction of iNOS in the digestive tract and thereby inhibits crop emptying rate. However, the co-injection of SMT did not attenuate the inhibitory effect of zymosan on crop emptying. The present study provides evidence that some changes in the digestive tract caused by zymosan are mediated by iNOS-induced NO in chicks, but NO does not mediate the effect of zymosan on feed passage through the crop.


Asunto(s)
Buche de las Aves/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Óxido Nítrico/metabolismo , Zimosan/farmacología , Alimentación Animal/análisis , Animales , Pollos , Buche de las Aves/metabolismo , Digestión/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Masculino
11.
J Therm Biol ; 98: 102905, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34016332

RESUMEN

The aim of this study was to examine the central action of taurine on body temperature and food intake in neonatal chicks under control thermoneutral temperature (CT) and high ambient temperature (HT). Intracerebroventricular injection of taurine caused dose-dependent hypothermia and reduced food intake under CT. The mRNA expression of the GABAA receptors, GABAAR-α1 and GABAAR-γ, but not that of GABABR, significantly decreased in the diencephalon after central injection of taurine. Subsequently, we found that picrotoxin, a GABAAR antagonist, attenuated taurine-induced hypothermia. Central taurine significantly decreased the brain concentrations of 3-methoxy-4-hydroxyphenylglycol, a major metabolite of norepinephrine; however, the concentrations of serotonin, dopamine, and the epinephrine metabolites, 3,4-hydroxyindoleacetic acid and homovanillic acid, were unchanged. Although hypothermia was not observed under HT after central injection of taurine, plasma glucose and uric acid levels were higher, and plasma sodium and calcium levels were lower, than those in chicks under CT. In conclusion, brain taurine may play a role in regulating body temperature and food intake in chicks through GABAAR. The changes in plasma metabolites under heat stress suggest that brain taurine may play an important role in maintaining homeostasis in chicks.


Asunto(s)
Pollos/fisiología , Ingestión de Alimentos , Hipotermia/fisiopatología , Receptores de GABA-A/fisiología , Temperatura , Animales , Monoaminas Biogénicas/metabolismo , Glucemia/análisis , Temperatura Corporal , Encéfalo/metabolismo , Pollos/sangre , Pollos/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Hipotermia/sangre , Hipotermia/inducido químicamente , Hipotermia/genética , Inyecciones , Masculino , Receptores de GABA-A/genética , Taurina , Ácido Úrico/sangre
12.
Gen Comp Endocrinol ; 298: 113576, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735796

RESUMEN

Exposure to high ambient temperatures (HAT) is associated with increased mortality, weight loss, immunosuppression, and metabolic malfunction in birds, all of which are likely downstream effects of reduced food intake. While the mechanisms mediating the physiological responses to HAT are documented, the neural mechanisms mediating behavioral responses are poorly understood. The aim of the present study was thus to investigate the hypothalamic mechanisms mediating heat-induced anorexia in four-day old broiler chicks. In Experiment 1, chicks exposed to HAT reduced food intake for the duration of exposure compared to controls in a thermoneutral environment (TN). In Experiment 2, HAT chicks that were administered an intracerebroventricular (ICV) injection of neuropeptide Y (NPY) increased food intake for 60 min post-injection, while TN chicks that received NPY increased food intake for 180 min post-injection. In Experiment 3, chicks in both the TN and HAT groups that received ICV injections of corticotropin-releasing factor (CRF) reduced food intake for up to 180 min post-injection. In Experiment 4, chicks that were exposed to HAT and received an ICV injection of astressin ate the same as controls in the TN group. In Experiment 5, chicks exposed to HAT that received an ICV injection of α-melanocyte stimulating hormone reduced food intake at both a high and low dose, with the low dose not reducing food intake in TN chicks. In Experiment 6, there was increased c-Fos expression in the hypothalamic paraventricular nucleus (PVN), lateral hypothalamic area (LHA), and the nucleus of the hippocampal commissure (NHpC). In Experiment 7, exposure to HAT was associated with decreased CRF mRNA in the NHpC, increased CRF mRNA in the PVN, and decreased NPY mRNA in the arcuate nucleus (ARC). In sum, these results demonstrate that exposure to HAT causes a reduction in food intake that is likely mediated via downregulation of NPY via the CRF system.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Ingestión de Alimentos , Fórnix/metabolismo , Calor , Núcleo Hipotalámico Paraventricular/metabolismo , Animales , Anorexia/metabolismo , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Pollos/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Fórnix/efectos de los fármacos , Inyecciones Intraventriculares , Masculino , Neuropéptido Y/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , alfa-MSH/metabolismo , alfa-MSH/farmacología
13.
Gen Comp Endocrinol ; 299: 113558, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32707241

RESUMEN

Neuropeptide S (NPS), a 20-amino acid neuropeptide, is produced in the brain and is associated with appetite suppression.Our group was the first to report this anorexigenic effect in birds using chicken as a model, although a hypothalamic molecular mechanism remains to be elucidated. Thus, we designed the present study using Japanese quail(Coturnix japonica).In Experiment 1, quail intracerebroventricularly injected with NPS reduced both food and water intake. In Experiment 2, food-restricted quail injected with NPS displayed a reduction in water intake.In Experiment 3, NPS-injected quail reduced their feeding and exploratory pecks.In Experiment 4, we quantified the number of cells expressing the early intermediate gene product c-Fos (as a marker of neuronal activation) in appetite associated hypothalamic nuclei and found that immunoreactivity was increased in the paraventricular nucleus (PVN). In Experiment 5, we utilized real-time PCR to screen for neuropeptide changes within the PVN of NPS-injected quail. Mesotocin and corticotropin-releasing factor (CRF) mRNAs increased in response to NPS injection. In Experiment 6, co-injection of astressin, a CRF receptor antagonist, was sufficient to block the food intake-suppressive effects of NPS, but in Experiment 7, co-injection of an oxytocin receptor antagonist was not sufficient to block the food intake-suppressive effects of NPS. Collectively, results support that NPS induces an anorexigenic response in Japanese quail that is mediated within the PVN and is associated with CRF.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Neuropéptidos/uso terapéutico , Núcleo Hipotalámico Paraventricular/fisiopatología , Respuesta de Saciedad/fisiología , Animales , Humanos , Masculino , Neuropéptidos/farmacología , Codorniz , Ratas , Ratas Wistar
14.
Artículo en Inglés | MEDLINE | ID: mdl-32380163

RESUMEN

Oxyntomodulin (OXM) is a proglucagon-derived peptide that suppresses hunger in humans. There are some differences in its food intake-inhibitory effects among species. The central mechanisms are unclear and it is unknown if OXM is more efficacious in a gallinaceous species that has not undergone as much selection for growth as the chicken. The objective was thus to determine the effects of OXM on food and water intake and hypothalamic physiology in Japanese quail. At 7 days post-hatch, 6-h-fasted quail were injected intracerebroventricularly (ICV) or intraperitoneally (IP) with 0.32, 0.65, or 1.3 nmol of OXM. All doses decreased food intake for 180 min post-ICV injection. On a cumulative basis, water intake was not affected until 120 min, with the lowest and highest doses decreasing water intake after ICV injection. The two highest doses were anorexigenic when administered via the IP route, whereas all doses were anti-dipsogenic starting at 30 min post-injection. In hypothalamic samples collected at 1-h post-ICV injection, there was an increase in c-Fos immunoreactivity, an indicator of recent neuronal activation, in the arcuate nucleus (ARC) and dorsomedial nucleus (DMN) of the hypothalamus in OXM-injected individuals. Results suggest that quail are more sensitive than chickens to the satiety-inducing effects of OXM. The central mechanism is likely mediated through a pathway in the ARC that is conserved among species, and through activation of the DMN, an effect that is unique to quail. Such knowledge is critical for facilitating the development of novel, side effect-free anti-eating strategies to promote weight-loss in obesity.


Asunto(s)
Apetito/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Coturnix/fisiología , Ingestión de Alimentos/efectos de los fármacos , Oxintomodulina/farmacología , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distribución Aleatoria
15.
Artículo en Inglés | MEDLINE | ID: mdl-32171800

RESUMEN

Adipose tissue development is influenced by a variety of factors, including nutrition and genetic background. Among avian species, the most is known in chickens and it is unclear if other less-artificially-selected birds are similar during the first week post-hatch. The aim of this study was thus to determine effects of fasting and refeeding on adipose tissue physiology in Japanese quail (Coturnix japonica). On day 7 post-hatch, quail were randomly assigned to fed (control), 6 h of fasting (fasted), or 6 h of fasting followed by 1 h of refeeding (refed) groups. Blood samples were collected for plasma non-esterified fatty acid (NEFA) determination and subcutaneous adipose tissues were harvested for gene expression analyses. Plasma NEFAs were elevated in the fasted state and restored to baseline within 1 h of refeeding, whereas the expression of monoglyceride lipase in subcutaneous adipose tissue was not affected by feeding status. CCAAT/enhancer binding protein α mRNA was decreased by fasting and this change persisted through refeeding, whereas neuropeptide Y receptor 5 mRNA was decreased in refed compared to fasted birds. Our results suggest that fasting promotes lipolysis and gene expression changes in young quail with some of these changes restored to original levels within only 1 h of refeeding. Thus, in quail, adipose tissue physiology is dynamic and influenced by short-term changes in nutritional status during the early post-hatch period.


Asunto(s)
Ayuno/fisiología , Conducta Alimentaria , Codorniz/metabolismo , Grasa Subcutánea/metabolismo , Animales , Animales Recién Nacidos , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ácidos Grasos no Esterificados/sangre , Japón , Lipólisis , Codorniz/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo
16.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R802-R818, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30969842

RESUMEN

Chickens from lines selected for low (LWS) or high (HWS) body weight (BW) differ in appetite and adiposity. Mechanisms associated with the predisposition to becoming obese are unclear. The objective of the experiment was to evaluate developmental changes in depot-specific adipose tissue during the first 2 wk posthatch. Subcutaneous (SQ), clavicular (CL), and abdominal (AB) depots were collected at hatch (DOH) and days 4 (D4) and 14 (D14) posthatch for histological and mRNA measurements. LWS chicks had decreased SQ fat mass on a BW basis with reduced adipocyte size from DOH to D4 and increased BW and fat mass with unchanged adipocyte size from D4 to D14. HWS chicks increased in BW from DOH to D14 and increased in fat mass in all three depots with enlarged adipocytes in the AB depot from D4 to D14. Meanwhile, CCAAT/enhancer-binding protein-α, neuropeptide Y, peroxisome proliferator-activated receptor-γ, and acyl-CoA dehydrogenase mRNAs differed among depots between lines at different ages. Plasma nonesterified fatty acids were greater in LWS than HWS at D4 and D14. From DOH to D4, LWS chicks mobilized SQ fat and replenished the reservoir through hyperplasia, whereas HWS chicks were dependent on hyperplasia and hypertrophy to maintain adipocyte size and depot mass. From D4 to D14, adipose tissue catabolism and adipogenesis slowed. Whereas LWS fat depots and adipocyte sizes remained stable, HWS chicks rapidly accumulated fat in CL and AB depots. Chicks predisposed to be anorexic or obese have different fat development patterns during the first 2 wk posthatch.


Asunto(s)
Adipogénesis , Tejido Adiposo/crecimiento & desarrollo , Adiposidad , Pollos/crecimiento & desarrollo , Aumento de Peso , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Animales , Animales Recién Nacidos , Anorexia/genética , Anorexia/metabolismo , Anorexia/fisiopatología , Anorexia/veterinaria , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Pollos/genética , Pollos/metabolismo , Femenino , Regulación de la Expresión Génica , Masculino , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/veterinaria , PPAR gamma/genética , PPAR gamma/metabolismo , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/fisiopatología , Factores de Tiempo
17.
Gen Comp Endocrinol ; 276: 22-29, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30769012

RESUMEN

Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with anorexigenic effects across various species, with particularly potent reductions in food intake in rodents and chickens (Gallus gallus domesticus), a species for which the most is known. The purpose of the current study was to determine the hypothalamic mechanism of CRF-induced anorexigenic effects in 7 day-old Japanese quail (Coturnix japonica), a less-intensely-selected gallinaceous relative to the chicken that can provide more evolutionary perspective. After intracerebroventricular (ICV) injection of 2, 22, or 222 pmol of CRF, a dose-dependent decrease in food intake was observed that lasted for 3 and 24 h for the 22 and 222 pmol doses, respectively. The 2 pmol dose had no effect on food or water intake. The numbers of c-Fos immunoreactive cells were increased in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) at 1 h post-injection in quail injected with 22 pmol of CRF. The hypothalamic mRNA abundance of proopiomelanocortin, melanocortin receptor subtype 4, CRF, and CRF receptor sub-type 2 was increased at 1 h in quail treated with 22 pmol of CRF. Behavior analyses demonstrated that CRF injection reduced feeding pecks and jumps and increased the time spent standing. In conclusion, results demonstrate that the anorexigenic effects of CRF in Japanese quail are likely influenced by the interaction between CRF and melanocortin systems and that injection of CRF results in species-specific behavioral changes.


Asunto(s)
Anorexia/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Coturnix/metabolismo , Hipotálamo/metabolismo , Animales , Conducta Animal , Peso Corporal , Hormona Liberadora de Corticotropina/administración & dosificación , Ingestión de Líquidos/efectos de los fármacos , Conducta de Ingestión de Líquido , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria , Femenino , Inyecciones Intraventriculares , Masculino , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-31446069

RESUMEN

The body weight-selected lines of chickens are a model for understanding factors that predispose an individual to anorexia or obesity. The high body weight-selected (HWS) individuals are compulsive eaters that become obese whereas the low body weight-selected (LWS) are relatively lean and hypophagic. The objective of this study was to measure gene expression of various preadipocyte, proliferation, metabolic, and apoptotic markers in the stromal-vascular fraction and adipocytes from LWS and HWS adipose tissue. Although preadipocyte and proliferation markers were more highly expressed in the stromal-vascular fraction of LWS than HWS chicks, greater expression of granzyme-A and the presence of more annexin V-positive cells suggests that apoptosis may limit the adipogenic potential of adipocyte precursor cells and represent a novel mechanism that regulates the expansion of adipose tissue. Results provide insights on cellular mechanisms associated with adipose tissue development in the lean and obese state.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo/metabolismo , Anorexia/genética , Apoptosis/genética , Biomarcadores/metabolismo , Pollos/genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Granzimas/genética , Granzimas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-31404649

RESUMEN

Central administration of neuropeptide K (NPK), a 36-amino acid peptide, is associated with anorexigenic effects in rodents and chickens. The mechanisms underlying the potent anorexigenic effects of NPK are still poorly understood. Thus, the aim of the present study was to identify the hypothalamic nuclei and neuropeptides that mediate anorexic effects of NPK in 7 day-old Japanese quail (Coturnix japonica). After a 6 h fast, intracerebroventricular (ICV) injection of NPK decreased food and water intake for 180 min post-injection. Quail injected with NPK had more c-Fos immunoreactive cells in the arcuate nucleus (ARC), lateral hypothalamus, and paraventricular nucleus (PVN) compared to the birds that were injected with the vehicle. In the ARC of NPK-injected quail, there was decreased neuropeptide Y (NPY), NPY receptor sub-type 1, and agouti-related peptide mRNA, and increased CART, POMC, and neurokinin receptor 1 mRNA. NPK-injected quail expressed greater amounts of corticotropin-releasing factor (CRF), CRF receptor sub-type 2, melanocortin receptors 3 and 4, and urocortin 3 mRNA in the PVN. In conclusion, results provide insights into understanding NPK-induced changes in hypothalamic physiology and feeding behavior, and suggest that the anorexigenic effects of NPK involve the ARC and PVN, with increased CRF and melanocortin and reduced NPY signaling.


Asunto(s)
Anorexia/genética , Coturnix/metabolismo , Hipotálamo/metabolismo , Taquicininas/farmacología , Animales , Anorexia/inducido químicamente , Anorexia/metabolismo , Anorexia/patología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Coturnix/genética , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hipotálamo/efectos de los fármacos , Infusiones Intraventriculares , Proteínas del Tejido Nervioso/genética , Neuropéptido Y/genética , Proopiomelanocortina/genética , Proteínas Proto-Oncogénicas c-fos/genética , Receptores de Melanocortina/genética , Taquicininas/metabolismo , Urocortinas/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-30236911

RESUMEN

There is little information regarding effects of fasting on feeding behavior and hypothalamic physiology in young Japanese quail. The aim was thus to measure food intake and hypothalamic mRNA in response to fasting and refeeding. Five d-old quail ate little during the dark cycle. Food intake was greatest during the first 2 h of the light cycle. Six day-old quail fasted for 6 h ate the most during the first 15 min of refeeding. In 7 d-old quail, 3 h of fasting up-regulated hypothalamic neuropeptide Y (NPY), NPY receptor sub-type 2 (NPYR2), agouti-related peptide (AgRP), orexin receptor 2 (ORXR2), melanocortin receptors 3 and 4 (MC3R and MC4R, respectively), and neuropeptide S (NPS) and decreased corticotropin-releasing factor receptor sub-type 1 (CRFR1) mRNA. Quail fasted for 3 h and refed for 1 h had greater NPY, AgRP, POMC, and MC3R but less CRFR1 mRNA than fed quail. Quail fasted for 6 h expressed more NPY, NPYR1, NPYR2, and MC3R and less ORXR2, prolactin releasing peptide (PrRP), cocaine- and amphetamine-regulated transcript (CART), and calcitonin (CAL) mRNA than fed quail. Quail fasted for 6 h and refed for 1 h expressed more NPY, NPYR1, NPYR2, AgRP, MC3R, MC4R, and NPS and less galanin, ORXR2, PrRP, CART, and CAL mRNA than fed birds. Hence, fasting induced changes in hypothalamic mRNA, with the largest changes occurring in genes associated with NPY and melanocortin signaling. Most genes remained elevated or downregulated after refeeding, suggesting that there was a time lag for transcription to respond to compensatory feeding.


Asunto(s)
Apetito , Coturnix/fisiología , Ayuno , Conducta Alimentaria , Hipotálamo/metabolismo , ARN Mensajero/metabolismo , Animales , Coturnix/metabolismo , Péptidos/genética , Fotoperiodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA